【題目】2020年初,新冠肺炎疫情襲擊全國,對人民生命安全和生產(chǎn)生活造成嚴(yán)重影響.在黨和政府強有力的抗疫領(lǐng)導(dǎo)下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復(fù)工復(fù)產(chǎn),減輕經(jīng)濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是2萬件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)一萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來計算)

1)將2020年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

【答案】1

22018年的促銷費用投入3萬元時,廠家的利潤最大為29萬元.

【解析】

1)根據(jù)題意時,,求出,進一步求出銷售價格,由利潤銷售額固定成本再投入成本促銷費,即可求解.

2)由(1,利用基本不等式即可求解.

1)由題意知,當(dāng)時,(萬件),

,解得.

所以每件產(chǎn)品的銷售價格為(元),

2018年的利潤.

2當(dāng)時,,

,當(dāng)且僅當(dāng)時等號成立.

,

當(dāng)且僅當(dāng),即萬元時,(萬元).

故該廠家2018年的促銷費用投入3萬元時,廠家的利潤最大為29萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經(jīng)過曲線軸的交點.

(1)求圓的方程;

(2)已知過坐標(biāo)原點的直線與圓兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左右焦點分別為,,過點的直線與交于點. ,,則的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月某城市國際馬拉松賽正式舉行,組委會對名裁判人員進(年齡均在歲到歲)行業(yè)務(wù)培訓(xùn),現(xiàn)按年齡(單位:歲)進行分組統(tǒng)計:第,第,第,第,第,得到的頻率分布直方圖如下:

(1)若把這名裁判人員中年齡在稱為青年組,其中男裁判名;年齡在的稱為中年組,其中男裁判.試完成列聯(lián)表并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為裁判員屬于不同的組別(青年組或中年組)與性別有關(guān)系?

(2)培訓(xùn)前組委會用分層抽樣調(diào)查方式在第組共抽取了名裁判人員進行座談,若將其中抽取的第組的人員記作,第組的人員記作,第組的人員記作,若組委會決定從上述名裁判人員中再隨機選人參加新聞發(fā)布會,要求這組各選人,試求裁判人員不同時被選擇的概率;

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以原點為極點,以軸為非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求圓的普通方程與極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,求圓上的點到直線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C:的左、右項點分別為A1,A2,左右焦點分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標(biāo)原點.

(1)求橢圓C的方程;

(2)設(shè)過點P(4,m)的直線PA1,PA2與橢圓分別交于點M,N,其中m>0,求的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場有一塊等腰直角三角形的空地,其中斜邊的長度為400.為迎接“五一”觀光游,欲在邊界上選擇一點,修建觀賞小徑,其中分別在邊界上,小徑與邊界的夾角都為.區(qū)域和區(qū)域內(nèi)種植郁金香,區(qū)域內(nèi)種植月季花.

1)探究:觀賞小徑的長度之和是否為定值?請說明理由;

2)為深度體驗觀賞,準(zhǔn)備在月季花區(qū)域內(nèi)修建小徑,當(dāng)點在何處時,三條小徑的長度和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(,1),以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得恒為定值?若存在,求出該定值及點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個動點到點的距離比到直線的距離多1.

(1)求動點的軌跡的方程;

(2)若過點的直線與曲線交于兩點,且線段中點是點,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案