【題目】嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為

A. B. C. D.

【答案】B

【解析】

由題意分別求得a,c的值,然后結(jié)合離心率的定義可得橢圓離心率的近似值.

如下圖,F為月球的球心,月球半徑為:×34761738,

依題意,|AF|=10017381838,

    |BF|=40017382138.

2a18382138,

a1988

ac2138,

c21381988150

橢圓的離心率為:,

B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱 ABC A1 B1C1 中, AB 3 AA1 4 , M AA1 的中點(diǎn), P BC 上一點(diǎn),且由 P 沿棱柱側(cè)面經(jīng)過棱 CC1 M 點(diǎn)的最短路線長(zhǎng)為 ,設(shè)這條最短路線與 CC1 的交點(diǎn)為 N 。求:

1)該三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng);

2 PC NC 的長(zhǎng);

3)平面 NMP 和平面 ABC 所成銳二面角大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】物價(jià)監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)x(元/kg)

10

20

30

40

50

60

年銷量y(kg)

1150

643

424

262

165

86

z=21ny

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù):,

,

(Ⅰ)根據(jù)散點(diǎn)圖判斷,y與x和z與x哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說明理由)?

(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C過點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過F的直線l與橢圓C相交于AB兩點(diǎn).設(shè)點(diǎn)P(4,3),記PAPB的斜率分別為k1k2

(1)求橢圓C的方程;

(2)如果直線l的斜率等于-1,求出k1k2的值;

(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,已知MBC的中點(diǎn).

(1),求向量與向量的夾角的余弦值;

(2)O是線段AM上任意一點(diǎn),,求的最小值;

(3)若點(diǎn)P是邊BC上的一點(diǎn),,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

在如圖所示的多面體中,平面,,,,,的中點(diǎn).

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程(本題滿分10分)

在平面直角坐標(biāo)系中,將曲線向左平移2個(gè)單位,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,的極坐標(biāo)方程為

(1)求曲線的參數(shù)方程;

(2)已知點(diǎn)在第一象限,四邊形是曲線的內(nèi)接矩形,求內(nèi)接矩形周長(zhǎng)的最大值,并求周長(zhǎng)最大時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左.右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形的邊長(zhǎng)為 的正方形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,分別是橢圓長(zhǎng)軸的左,右端點(diǎn),動(dòng)點(diǎn)滿足,連結(jié),交橢圓于點(diǎn).證明: 的定值;

(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點(diǎn),的定點(diǎn),使得以為直徑的圓恒過直線,的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.

注:年份代碼分別表示對(duì)應(yīng)年份.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)線性相關(guān)較強(qiáng))加以說明;

2)建立的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2019年該區(qū)生活垃圾無害化處理量.

(參考數(shù)據(jù)),,,.

(參考公式)相關(guān)系數(shù),在回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

同步練習(xí)冊(cè)答案