【題目】物價(jià)監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:
定價(jià)x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=21ny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù):,,
,)
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y與x和z與x哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說(shuō)明理由)?
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)+(ω≥0,|φ|<π)的圖象與直線y=c(<c<)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)為2,6,18,若a=f(lg),b=f(lg2),則以下關(guān)系式正確的是( 。
A. a+b=0B. a﹣b=0C. a+b=1D. a﹣b=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果有窮數(shù)列、、、、(為正整數(shù))滿足條件、、,即,我們稱其為“對(duì)稱數(shù)列”.例如,數(shù)列、、、、與數(shù)列、、、、、都是“對(duì)稱數(shù)列”.
(1)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是等差數(shù)列,且,,依次寫出的每一項(xiàng);
(2)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是首項(xiàng)為,公比為的等比數(shù)列,求各項(xiàng)的和;
(3)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是首項(xiàng)為,公差為的等差數(shù)列,求前項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;
(Ⅱ)若,求證:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列前項(xiàng)和為,且.
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元;乙公司無(wú)底薪,40單以內(nèi)(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元.假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
(1)現(xiàn)從甲公司記錄的這100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(2)若將頻率視為概率,回答以下問(wèn)題:
(i)記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+2|x+1|.
(1)當(dāng)a=2時(shí),解不等式f(x)>4.
(2)若不等式f(x)<3x+4的解集是{x|x>2},求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com