【題目】已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;

3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

【答案】(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)

【解析】

1)根據(jù),討論兩種情況,即可求得數(shù)列的通項(xiàng)公式;

2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.

3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.

1)由題意可知,.

當(dāng)時(shí),,

當(dāng)時(shí),也滿足上式.

所以.

2)解法一:由(1)可知,

.

當(dāng)時(shí),,

當(dāng)時(shí),,所以,

當(dāng)時(shí),,

當(dāng)時(shí),,所以,

……

當(dāng)時(shí),n為偶數(shù)

當(dāng)時(shí),n為偶數(shù)所以

以上個(gè)式子相加,

.

,所以當(dāng)n為偶數(shù)時(shí),.

同理,當(dāng)n為奇數(shù)時(shí),

,

所以,當(dāng)n為奇數(shù)時(shí),.

解法二:

猜測(cè):當(dāng)n為奇數(shù)時(shí),

.

猜測(cè):當(dāng)n為偶數(shù)時(shí),

.

以下用數(shù)學(xué)歸納法證明:

,命題成立;

假設(shè)當(dāng)時(shí),命題成立;

當(dāng)n為奇數(shù)時(shí),,

當(dāng)時(shí),n為偶數(shù),

,時(shí),命題也成立.

綜上可知, 當(dāng)n為奇數(shù)時(shí)

同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.

3)由(2)可知.

①當(dāng)n為偶數(shù)時(shí),,

所以n的增大而減小從而當(dāng)n為偶數(shù)時(shí),的最大值是.

②當(dāng)n為奇數(shù)時(shí),,

所以n的增大而增大,.

綜上,的最大值是1.

因此,若對(duì)于任意的,不等式恒成立,只需,

故實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中裝有大小形狀完全相同的個(gè)乒乓球,其中1個(gè)乒乓球上標(biāo)有數(shù)字1,2個(gè)乒乓球上標(biāo)有數(shù)字2,其余個(gè)乒乓球上均標(biāo)有數(shù)字3,若從這個(gè)口袋中隨機(jī)地摸出2個(gè)乒乓球,恰有一個(gè)乒乓球上標(biāo)有數(shù)字2的概率是.

(1)求的值;

(2)從口袋中隨機(jī)地摸出2個(gè)乒乓球,設(shè)表示所摸到的2個(gè)乒乓球上所標(biāo)數(shù)字之積,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《朗讀者》是一檔文化情感類節(jié)目,以個(gè)人成長(zhǎng)、情感體驗(yàn)、背景故事與傳世佳作相結(jié)合的方式,選用精美的文字,用最平實(shí)的情感讀出文字背后的價(jià)值,深受人們的喜愛.為了了解人們對(duì)該節(jié)目的喜愛程度,某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了,兩個(gè)城市各100名觀眾,得到下面的列聯(lián)表.

非常喜愛

喜愛

合計(jì)

城市

60

100

城市

30

合計(jì)

200

完成上表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為觀眾的喜愛程度與所處的城市有關(guān)?

附參考公式和數(shù)據(jù):(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)在拋物線上運(yùn)動(dòng),點(diǎn)軸上的射影為,動(dòng)點(diǎn)滿足.

求動(dòng)點(diǎn)的軌跡的方程;

過點(diǎn)作互相垂直的直線,,分別交曲線于點(diǎn),,記,的面積分別為,,問:是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,平面平面,是邊長(zhǎng)為2的等邊三角形,,,點(diǎn)的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長(zhǎng),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱中所有棱長(zhǎng)都相等,、分別為、的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:

平面;異面直線所成角的正弦值是.

其中正確的結(jié)論是(

A.,B.,

C.,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的一個(gè)極值點(diǎn),判斷的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)是橢圓的左焦點(diǎn),直線:軸交于點(diǎn),為橢圓的長(zhǎng)軸,已知,且,過點(diǎn)作斜率為直線與橢圓相交于不同的兩點(diǎn) ,

1)當(dāng)時(shí),線段的中點(diǎn)為,過軸于點(diǎn),求;

2)求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案