【題目】已知函數(shù)f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數(shù)y=f(x)在區(qū)間(1,3)上單調(diào),求a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x在(0, )上無零點,求a的最小值.
【答案】
(1)解:f′(x)=3﹣a﹣ = ,
當(dāng)a≥3時,有f′(x)<0,即函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減;
當(dāng)a<3時,令f′(x)=0,得x= ,若函數(shù)y=f(x)在區(qū)間(1,3)單調(diào),
則 ≤1或 ≥3,解得:a≤1或 ≤a<3,
綜上,a的范圍是(﹣∞,1]∪[ ,+∞)
(2)解:x→0時,g(x)→+∞,
∴g(x)=(2﹣a)(x﹣1)﹣2lnx<0在區(qū)間(0, )上恒成立不可能,
故要使函數(shù)g(x)在(0, )無零點,只需對任意的x∈(0, ),g(x)>0恒成立,
即對x∈(0, ),a>2﹣ 恒成立,
令l(x)=2﹣ ,x∈(0, ),
則l′(x)= ,
令m(x)=2lnx+ ﹣2,x∈(0, ),
則m′(x)= <0,
故m(x)在(0, )上遞減,于是m(x)>m( )=2﹣2ln2>0,
從而,l′(x)>0,于是l(x)在(0, )遞增,
∴l(xiāng)(x)<l( )=2﹣4ln2,
故要使a>2﹣ 恒成立,只需a∈[2﹣4ln2,+∞),
綜上,若函數(shù)g(x)=f(x)﹣x在(0, )上無零點,則a的最小值是2﹣4ln2
【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,判斷導(dǎo)函數(shù)的符號,從而求出函數(shù)的單調(diào)區(qū)間即可;(2)問題轉(zhuǎn)化為對x∈(0, ),a>2﹣ 恒成立,令l(x)=2﹣ ,x∈(0, ),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
【考點精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減),還要掌握函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n), .
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若f(1-x)=f(1+x),且f(0)=3.
(Ⅰ)求b,c的值;
(Ⅱ)試比較(m∈R)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1 =z2
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了緩解交通壓力,某省在兩個城市之間特修一條專用鐵路,用一列火車作為公共交通車.已知每日來回趟數(shù)y是每次拖掛車廂節(jié)數(shù)x的一次函數(shù),如果該列火車每次拖4節(jié)車廂,每日能來回16趟;如果每次拖6節(jié)車廂,則每日能來回10趟,火車每日每次拖掛車廂的節(jié)數(shù)是相同的,每節(jié)車廂滿載時能載客110人.
(1)求出y關(guān)于x的函數(shù);
(2)該火車滿載時每次拖掛多少節(jié)車廂才能使每日營運人數(shù)最多?并求出每天最多的營運人數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)a2﹣2ab+5b2=4對a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com