直線x•sinθ-y•tanθ+1=0與x•secθ+y-5=0的位置關(guān)系是
 
考點(diǎn):直線的圖象特征與傾斜角、斜率的關(guān)系
專題:直線與圓
分析:根據(jù)直線斜率之間的關(guān)系即可得到結(jié)論.
解答: 解:∵x•sinθ-y•tanθ+1=0的斜率k=
sinθ
tanθ
=cosθ
,x•secθ+y-5=0的斜率k=-secθ,
∴=-secθcosθ=-1,
即兩直線垂直,
故答案為:垂直
點(diǎn)評(píng):本題主要考查直線位置關(guān)系的判斷,根據(jù)斜率之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某海濱浴場(chǎng)的海浪高度y米是時(shí)間t(0≤t≤24單位:小時(shí))的函數(shù),記y=f(t),下表是某日的浪高數(shù)據(jù):
t 小時(shí)03691215182124
y 米1.51.00.51.01.51.00.50.991.5
經(jīng)長(zhǎng)期觀測(cè)y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b,根據(jù)以上數(shù)據(jù),
(1)求出函數(shù)y=Acosωt+b的最小正周期、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1.25米時(shí),才對(duì)沖浪愛(ài)好者開(kāi)放,請(qǐng)根據(jù)(Ⅰ)的結(jié)論,判斷一天內(nèi)的上午8點(diǎn)到晚上20點(diǎn)之間,哪些時(shí)間段可供沖浪者進(jìn)行運(yùn)動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某生產(chǎn)廠家的年利潤(rùn)y(單位:萬(wàn)元)與年產(chǎn)量x(單位:萬(wàn)件)的函數(shù)關(guān)系式為y=-
1
3
x3+81x-234,則使該生產(chǎn)廠家獲得最大年利潤(rùn)的年產(chǎn)量為
 
萬(wàn)件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(sin2x-1,cos2x),
b
=(3,
3
)

①若
a
的單位向量,求x;
②設(shè)f(x)=
a
b
,求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)小王家訂了一份報(bào)紙,送報(bào)人可能在早上6點(diǎn)-8點(diǎn)之間把報(bào)紙送到他家,他每天離家外出的時(shí)間在早上6點(diǎn)-9點(diǎn)之間.他離家前看不到報(bào)紙的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2010x1+log2010x2+…+log2010x2009的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列為某班級(jí)英語(yǔ)及數(shù)學(xué)成績(jī)的統(tǒng)計(jì),學(xué)生共有50人,成績(jī)實(shí)行5分制,如表中英語(yǔ)成績(jī)?yōu)?分,數(shù)學(xué)成績(jī)?yōu)?分的人數(shù)為5人,將全班學(xué)生的姓名卡混在一起,任取一枚,則該卡片上的學(xué)生的數(shù)學(xué)、英語(yǔ)成績(jī)和不低于8分的概率是( 。
數(shù)學(xué)
人數(shù)
英語(yǔ)
54321
51310c
410751
321091
21b60a
100113
A、0.16B、0.20
C、0.25D、0.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在區(qū)間[m,n],使x∈[m,n]時(shí),f(x)∈[km,kn](k∈N*),則稱區(qū)間[m,n]為函數(shù)f(x)的“k倍區(qū)間”.已知函數(shù)f(x)=x3+sinx,則的“5倍區(qū)間”的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案