已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別是F1,F(xiàn)2,過F1垂直于x軸的直線與E相交于A,B 兩點(diǎn),且|AB|=3
2
,離心率為
2
2

(1)求橢圓E的方程;
(2)過焦點(diǎn)F2作與坐標(biāo)軸不垂直的直線l交橢圓E于C,D兩點(diǎn),點(diǎn)M是點(diǎn)C關(guān)于x軸的對稱點(diǎn),在x軸上是否存在一個定點(diǎn)N使得D,M,N三點(diǎn)共線?若存在,求出點(diǎn)N坐標(biāo);若不存在,請說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)求出A的縱坐標(biāo),利用|AB|=3
2
,建立方程,再利用離心率為
2
2
,求出幾何量,即可求出橢圓E的方程;
(2)直線l:y=k(x-3)(k≠0),代入橢圓方程,消去y,由已知M(x1,-y1),設(shè)存在定點(diǎn)N(t,0),使得D,M,N三點(diǎn)共線,則
y2
x2-t
=
-y1
x1-t
,利用韋達(dá)定理,即可得出結(jié)論.
解答: 解:(1)由題意,xA=-c,∴
(-c)2
a2
+
y2
b2
=1
,
∴y=±
b2
a
,
∴|AB|=2•
b2
a
=3
2
,
c
a
=
2
2
,b2=a2-c2,
∴a=3
2
,b=3,
∴橢圓E的方程為
x2
18
+
y2
9
=1

(2)直線l:y=k(x-3)(k≠0),代入橢圓方程,消去y可得(2k2+1)x2-12k2x+18k2-18=0,
設(shè)C(x1,y1),D(x2,y2),則x1+x2=
12k2
1+2k2
,x1x2=
18k2-18
1+2k2
,
由已知M(x1,-y1),設(shè)存在定點(diǎn)N(t,0),使得D,M,N三點(diǎn)共線,
y2
x2-t
=
-y1
x1-t
,
∴t=
x1y2+x2y1
y1+y2
=
2x1x2-3(x1+x2)
x1+x2-6
=6,
∴在x軸上存在一個定點(diǎn)N(6,0),使得D,M,N三點(diǎn)共線.
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|log2(x-1)<2},N={x|a<x<6},且M∩N=(2,b),則a+b=( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}滿足:an2-(n2+n-1)an-(n2+n)=0(n∈N+),數(shù)列{bn}的前n項和為Sn,且滿足b1=1,2Sn=1+bn(n∈N+).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=
(2n+1)bn
an
,數(shù)列{cn}的前n項和為Tn,求證:T2n<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的方程
x=
3
+
2
2
t
y=2-
2
2
t.
(t為參數(shù)),以原點(diǎn)O為極點(diǎn),Ox軸為極軸,取相同的單位長度,建立極坐標(biāo)系,曲線C的方程為ρ=2
3
cosθ,
(I) 求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C與直線l交于A、B兩點(diǎn),若P(
3
,2)
,求|PA|+|PB|和|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,我國許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識,某市面向全市征召N名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織.現(xiàn)把該組織的成員按年齡分成5組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示,已知第2組有35人.
(1)求該組織的人數(shù).
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加某社區(qū)的宣傳活動,應(yīng)從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗,求第3組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=1+t
y=3-2t
(t為參數(shù)且t∈R)與曲線C:
x=cosα
y=2+cos2α
(α是參數(shù)且α∈[0,2π)),則直線l與曲線C的交點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一個形如六邊形的點(diǎn)陣,它的中心是一個點(diǎn)(算第1層),第2層每邊有兩個點(diǎn),第3層每邊有三個點(diǎn),依此類推.如果一個六邊形點(diǎn)陣共有169個點(diǎn),那么它一共有
 
層.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正數(shù),且ab=a+b+3,則ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=(a2+2a-3)+(a-l)i為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a的值為(  )
A、-3B、-3或1
C、3或-1D、1

查看答案和解析>>

同步練習(xí)冊答案