【題目】如圖,在幾何體中,四邊形是菱形, 平面, , .

(1)證明:平面平面.

(2)若二面角是直二面角,求與平面所成角的正切值。

【答案】(1)見解析;(2)

【解析】試題分析:(1)利用面面垂直的判定定理證明即可; (2)利用二面角是直二面角,求出菱形的邊長,再求出與平面所成角的正切值.

試題解析:(1)證明:∵四邊形是菱形,∴

平面

平面

平面∴平面⊥平面

(2)(向量)解:以點為原點, 方向為軸, 方向為軸, 方向為軸建立空間直角坐標(biāo)系,如圖。做的中點,連接,因為平行且等于, .

所以四邊形為平行四邊形,

因為在中, ,所以,所以

設(shè)長為,則各點坐標(biāo)為

; ;

所以;

設(shè)為面的法向量; 為面的法向量。

所以;

同理得

因為二面角是直二面角,所以

由題可得: 與平面所夾角

因為

所以

(幾何)

∵四邊形是菱形,∴

,∴

,連接,則二面角的平面角

設(shè)菱形的邊長為

, ,∴

中, ,∴

二面角為直角,∴為直角

中, ,設(shè),則

與平面所成角為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,右頂點為,上頂點為,過、三點的圓的圓心坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線為常數(shù), )與橢圓交于不同的兩點

(。┊(dāng)直線,且時,求直線的方程;

(ⅱ)當(dāng)坐標(biāo)原點到直線的距離為,且面積為時,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察圖中各正方形圖案,每條邊上有an個圓點,第an個圖案中圓點的個數(shù)是an,按此規(guī)律推斷出所有圓點總和Snn的關(guān)系式為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , , 平面.

(1)求證: 平面;

(2)若為線段的中點,且過三點的平面與線段交于點,確定點的位置,說明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0f(x)1,可以用隨機模擬方法近似計算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N)0~1區(qū)間上的均勻隨機數(shù)x1,x2,…,xNy1,y2,…,yN,由此得到N個點(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yif(xi)(i=1,2,…,N)的點數(shù)N1,那么由隨機模擬方法可得S的近似值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MN、P分別是正方體ABCDA1B1C1D1的棱AB、BC、DD1上的點.

(1),求證無論點PDD1上如何移動,總有BPMN;

(2)DD1上是否存在這樣的點P,使得平面APC1⊥平面ACC1?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點P(2,3),傾斜角為.

(Ⅰ)寫出直線l的參數(shù)方程和圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線l與圓C相交于AB兩點,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

(1)根據(jù)圖,1估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);

(2)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?

附: (其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案