【題目】已知數(shù)列的前n項(xiàng)和為,且滿足+n=2(n∈)
(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足(n∈),其前n項(xiàng)和為,試求滿足+>2018的最小正整數(shù)n.
【答案】(1)見(jiàn)解析;(2)8.
【解析】分析:(1)利用公式an+1=Sn+1﹣Sn即可得出an+1+1=2(an+1),故數(shù)列{an+1}為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式得出an+1,從而得出an;
(2)化簡(jiǎn)bn=n2n﹣n,再使用分項(xiàng)求和和錯(cuò)位相減法求和得出Tn,進(jìn)而解出n即可.
詳解:
(1)∵Sn+n=2an,∴Sn+1+(n+1)=2an+1,
∴an+1+1=2an+1﹣2an,即an+1+1=2(an+1),
又a1+1=2a1,∴a1=1.
∴{an+1}是以2為首選,以2為公比的等比數(shù)列.
∴an+1=2n,∴an=2n﹣1.
(2)bn=(2n﹣1)log22n=n(2n﹣1)=n2n﹣n.
∴Tn=12+222+323+…+n2n﹣(1+2+3+…+n)
=12+222+323+…+n2n﹣.
設(shè)12+222+323+…+n2n=An,
則122+223+324+…+n2n+1=2An,
兩式相減得2+22+23+…+2n﹣n2n+1=﹣An,
∴﹣An=﹣n2n+1=(1﹣n)2n+1﹣2,
∴An=(n﹣1)2n+1+2,
∴Tn=(n﹣1)2n+1+2﹣.
+(n﹣1)2n+1+2>2018
∴n=8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 是自然對(duì)數(shù)的底數(shù), .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若 為整數(shù), ,且當(dāng) 時(shí), 恒成立,其中 為 的導(dǎo)函數(shù),求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距,汽車從甲地行駛到乙地,速度不得超過(guò),已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度 ()的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運(yùn)輸成本(元)表示為速度()的函數(shù),指出定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水仙花經(jīng)營(yíng)部每天的房租、水電、人工等固定成本為1000元,每盆水仙花的進(jìn)價(jià)是10元,銷售單價(jià)(元) ()與日均銷售量(盆)的關(guān)系如下表,并保證經(jīng)營(yíng)部每天盈利.
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
(Ⅰ) 在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(duì)的對(duì)應(yīng)點(diǎn),并確定與的函數(shù)關(guān)系式;
(Ⅱ)求出的值,并解釋其實(shí)際意義;
(Ⅲ)請(qǐng)寫出該經(jīng)營(yíng)部的日銷售利潤(rùn)的表達(dá)式,并回答該經(jīng)營(yíng)部怎樣定價(jià)才能獲最大日銷售利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高級(jí)中學(xué)今年高一年級(jí)招收“國(guó)際班”學(xué)生人,學(xué)校為這些學(xué)生開(kāi)辟了直升海外一流大學(xué)的綠色通道,為了逐步提高這些學(xué)生與國(guó)際教育接軌的能力,將這人分為三個(gè)批次參加國(guó)際教育研修培訓(xùn),在這三個(gè)批次的學(xué)生中男、女學(xué)生人數(shù)如下表:
第一批次 | 第二批次 | 第三批次 | |
女 | |||
男 |
已知在這名學(xué)生中隨機(jī)抽取名,抽到第一批次、第二批次中女學(xué)生的概率分別是.
(1)求的值;
(2)為了檢驗(yàn)研修的效果,現(xiàn)從三個(gè)批次中按分層抽樣的方法抽取名同學(xué)問(wèn)卷調(diào)查,則三個(gè)批次被選取的人數(shù)分別是多少?
(3)若從第(2)小問(wèn)選取的學(xué)生中隨機(jī)選出兩名學(xué)生進(jìn)行訪談,求“參加訪談的兩名同學(xué)至少有一個(gè)人來(lái)自第一批次”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 , , .
(1)若 ,且 ,求 的值;
(2)將函數(shù) 的圖像向右平移 個(gè)單位長(zhǎng)度得到函數(shù) 的圖像,若函數(shù) 在 上有零點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見(jiàn)他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者5元錢;若摸得非同一顏色的3個(gè)球,摸球者付給攤主1元錢.
(1)摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?
(2)摸出的3個(gè)球?yàn)?/span>2個(gè)黃球1個(gè)白球的概率是多少?
(3)假定一天中有100人次摸獎(jiǎng),試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com