【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí), 恒成立,求范圍;
(Ⅱ)方程有唯一實(shí)數(shù)解,求正數(shù)的值.
【答案】(1) (2)
【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最大值,從而求出k的范圍即可;(2)lnx+x=0時(shí),不合題意,當(dāng)lnx+x≠0時(shí),m= 有唯一解,此時(shí)x>x0,記h(x)=,根據(jù)函數(shù)的單調(diào)性求出m的值即可.
解析:
(1)a=2時(shí),f(x)=lnx﹣x2+x,
f(x)的定義域是(0,+∞),
f′(x)=﹣2x+1,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
故f(x)在(0,1)遞增,在(1,+∞)遞減,
故f(x)max=f(1)=0,
若f(x)≤k恒成立,
則k≥0;
(2)方程mf(x)=(1﹣)x2有唯一實(shí)數(shù)解,
即m(lnx+x)=x2有唯一實(shí)數(shù)解,
當(dāng)lnx+x=0時(shí),顯然不成立,設(shè)lnx+x=0的根為x0∈(,1)
當(dāng)lnx+x≠0時(shí),m=有唯一解,此時(shí)x>x0
記h(x)=,
h′(x)=,
當(dāng)x∈(0,1)時(shí),x(x﹣1)<0,2xlnx<0,h′(x)<0,
當(dāng)x∈(1,+∞)時(shí),x(x﹣1)>0,2xlnx>0,h'(x)>0,
∴h(x)在(x0,1)上遞減,(1,+∞)上遞增.
∴h(x)min=h(1)=1,
當(dāng)x∈(x0,1)時(shí),h(x)∈(1,+∞),
當(dāng)x∈(1,+∞)時(shí),h(x)∈(1,+∞),
要使m=有唯一解,應(yīng)有m=h(1)=1,
∴m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,點(diǎn)為的中點(diǎn),點(diǎn)為線(xiàn)段垂直平分線(xiàn)上的一點(diǎn),且,四邊形為矩形,固定邊,在平面內(nèi)移動(dòng)頂點(diǎn),使得的內(nèi)切圓始終與切于線(xiàn)段的中點(diǎn),且在直線(xiàn)的同側(cè),在移動(dòng)過(guò)程中,當(dāng)取得最小值時(shí),點(diǎn)到直線(xiàn)的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐S—ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,則點(diǎn)A到平面SBC的距離為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1=1,|an+1-an|=pn,n∈N*.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, , , , 是的中點(diǎn), 是線(xiàn)段上一個(gè)動(dòng)點(diǎn),且,如圖所示,沿將翻折至,使得平面平面.
(1)當(dāng)時(shí),證明: 平面;
(2)是否存在,使得三棱錐的體積是?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·沈陽(yáng)期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點(diǎn),點(diǎn)P在以A為圓心,AD為半徑的圓弧上變動(dòng)(如圖所示).若=λ+μ,其中λ,μ∈R,則2λ-μ的取值范圍是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C1上任意一點(diǎn)M到直線(xiàn)l:y=4的距離是它到點(diǎn)F(0,1)距離的2倍;曲線(xiàn)C2是以原點(diǎn)為頂點(diǎn),F為焦點(diǎn)的拋物線(xiàn).
(1)求C1,C2的方程;
(2)設(shè)過(guò)點(diǎn)F的直線(xiàn)與曲線(xiàn)C2相交于A,B兩點(diǎn),分別以A,B為切點(diǎn)引曲線(xiàn)C2的兩條切線(xiàn)l1,l2,設(shè)l1,l2相交于點(diǎn)P,連接PF的直線(xiàn)交曲線(xiàn)C1于C,D兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中, , , 平面,在平行四邊形中, , , .
(1)求證: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com