【題目】在如圖所示的幾何體中, , , 平面,在平行四邊形中, ,

(1)求證: 平面;

(2)求與平面所成角的正弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1連接,取中點(diǎn),連接, ,由中位線可得 ,根據(jù), ,可推出, ,即可證明平面;(2)連接,根據(jù)題設(shè)條件分別求出, , 以及,通過(guò), 可得,從而可求出點(diǎn)到平面的距離,通過(guò)解三角形即可求出與平面所成角的正弦值.

試題解析:(1)證明:連接,取中點(diǎn),連接 .

、分別為的中點(diǎn)

,

又∵

, ,從而, 平面, 平面,

平面

(2)解:連接,可計(jì)算得, , , ,設(shè)點(diǎn)到平面的距離為,則由, ,得,所以由,知.

,

與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

當(dāng)時(shí), 恒成立,求范圍;

方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的標(biāo)準(zhǔn)方程為, 為拋物線上一動(dòng)點(diǎn), )為其對(duì)稱軸上一點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為.當(dāng)為拋物線的焦點(diǎn)且直線與其對(duì)稱軸垂直時(shí), 的面積為18.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)記,若值與點(diǎn)位置無(wú)關(guān),則稱此時(shí)的點(diǎn)為“穩(wěn)定點(diǎn)”,試求出所有“穩(wěn)定點(diǎn)”,若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若,求函數(shù)的極值及單調(diào)區(qū)間;

(2)若在區(qū)間上至少存在一點(diǎn),使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若兩函數(shù)圖象有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍;

(2)若, ,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn).

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè) )是的兩個(gè)零點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 是函數(shù)的極值點(diǎn).

(1)若,求函數(shù)的最小值;

(2)若不是單調(diào)函數(shù),且無(wú)最小值,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1若方程上有實(shí)數(shù)根求實(shí)數(shù)的取值范圍;

2上的最小值為求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的最小值;

(Ⅱ)解不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案