(1)計(jì)算(
1+i
2
2+
5i
3+4i
;
(2)復(fù)數(shù)z=x+yi(x,y∈R)滿(mǎn)足z+2i
.
z
=3+i求復(fù)數(shù)z.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)由復(fù)數(shù)的代數(shù)形式的運(yùn)算法則逐步計(jì)算可得;(2)把z=x+yi代入已知式子,由復(fù)數(shù)相等的定義可得x,y的方程組,解方程組可得.
解答: 解:(1)原式=
2i
2
+
5i(3-4i)
(3+4i)(3-4i)

=i+
5i(3-4i)
32+42
=i+
4+3i
5
=
4
5
+
8
5
i

(2)∵z=x+yi且滿(mǎn)足z+2i
.
z
=3+i,
∴(x+yi)+2i(x-yi)=3+i,
即(x+2y)+(2x+y)i=3+i,
由復(fù)數(shù)相等的定義可得
x+2y=3
2x+y=1

解得
x=-
1
3
y=
5
3
,∴z=-
1
3
+
5
3
i.
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第四象限角,且tanα=-2,則sinα=( 。
A、
5
5
B、-
5
5
C、-
2
5
5
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式
x2+3
x-a
<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從5名女同學(xué)和4名男同學(xué)中選出4人參加演講比賽,分別按下列要求,各有多少種不同選法?
(1)男、女同學(xué)各2名;
(2)男、女同學(xué)分別至少有1名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a和b分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),且隨機(jī)變量ξ表示方程ax2+bx+1=0的實(shí)根的個(gè)數(shù)(相等的兩根算一個(gè)根).
(1)求方程ax2+bx+1=0無(wú)實(shí)根的概率;   
(2)求隨機(jī)變量ξ的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1+x

(Ⅰ)求函數(shù)λ=[f(x)+f(-x)]2的值域;
(Ⅱ)設(shè)a為實(shí)數(shù),記函數(shù)h(x)=f(x)+f(-x)+af(x)•f(-x)的最大值為H(a).
(。┣驢(a)的表達(dá)式;
(ⅱ)試求滿(mǎn)足H(a)=H(
1
a
)的所有實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(Ⅰ)求f(x)在x=1處的切線(xiàn)方程;
(Ⅱ)若不等式f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)數(shù)列{an}中,a1=2,2an+1=an+1,數(shù)列{bn}滿(mǎn)足bn=nlnan,記{bn}的前n項(xiàng)和為T(mén)n.求證:Tn<4-
n+2
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2是橢圓Γ的兩焦點(diǎn).
(Ⅰ)若P是橢圓Γ上的任一點(diǎn),|PF1|+|PF2|=4且橢圓Γ的離心率e=
1
2
,求軌跡Γ的方程;
(Ⅱ)已知兩直線(xiàn)l1,l2,直線(xiàn)l1:y=k1x+m(m≠0)交橢圓Γ于A、B兩點(diǎn),若C為AB的中點(diǎn),直線(xiàn)l2:y=k2x過(guò)點(diǎn)C.求證:k1•k2=-
b2
a2
;
(Ⅲ)圓錐曲線(xiàn)在某些性質(zhì)方面呈現(xiàn)出統(tǒng)一性.在(Ⅱ)中,我們得到關(guān)于橢圓的一個(gè)優(yōu)美結(jié)論.請(qǐng)你寫(xiě)出關(guān)于雙曲線(xiàn)E:
x2
a2
-
y2
b2
=1的一個(gè)相類(lèi)似的結(jié)論(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0)的零點(diǎn)為x1,x2(x1<x2),f(x)的最小值y0∈[x1,x2),則函數(shù)y=f(f(x))的零點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案