設a和b分別是先后拋擲一枚骰子得到的點數(shù),且隨機變量ξ表示方程ax2+bx+1=0的實根的個數(shù)(相等的兩根算一個根).
(1)求方程ax2+bx+1=0無實根的概率;   
(2)求隨機變量ξ的概率分布列.
考點:離散型隨機變量的期望與方差
專題:計算題,概率與統(tǒng)計
分析:(1)由題意知本題是一個古典概型,試驗發(fā)生包含的所有事件根據(jù)分步計數(shù)原理知是36,滿足條件的事件:方程無實根,則△=b2-4a<0即b2<4a,通過列舉法得到所包含的基本事件個數(shù),利用古典概型的概率公式求出值.
(2)由題意知實根的個數(shù)只有三種結果,0、1、2,根據(jù)上一問的計算可以寫出當變量取值時對應的概率,寫出分布列.
解答: 解:基本事件總數(shù)為:6×6=36
(1)若方程無實根,則△=b2-4a<0即b2<4a
若a=1,則b=1,
若a=2,則b=1,2
若a=3,則b=1,2,3
若a=4,則b=1,2,3
若a=5,則b=1,2,3,4
若a=6,則b=1,2,3,4
∴目標事件個數(shù)為1+2+3+3+4+4=17
因此方程ax2+bx+1=0無實根的概率為
17
36
…(6分)
(2)由題意知,ξ=0,1,2,
則P(ξ=0)=
17
36
,P(ξ=1)=
2
36
=
1
18
,P(ξ=2)=
17
36
,
故ξ的分布列為
0 1 2

P
17
36
1
18
17
36
點評:本題主要考查離散型隨機變量的分布列和古典概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a2=2,a4=6,則前4項的和S4等于( 。
A、8B、10C、12D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中有A=60°,AB=2,BC=
3
,試求角C大小及邊AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=
2
2
AB.
(Ⅰ)證明:BC1∥平面A1CD;   
(Ⅱ)求二面角D-A1C-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=x-m2+m+2(m∈Z)在(0,+∞)上單調遞增.
(1)求函數(shù)f(x)的解析式;
(2)設g(x)=f(x)-ax+1,a為實常數(shù),求g(x)在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算(
1+i
2
2+
5i
3+4i

(2)復數(shù)z=x+yi(x,y∈R)滿足z+2i
.
z
=3+i求復數(shù)z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取15名路人進行了問卷調查,得到了如下列聯(lián)表:
男性 女性 合計
反感 5
不反感 4
合計 15
已知在這15人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此資料判斷是否能在犯錯誤的概率不超過0.05的前提下認為反感“中國式過馬路”與性別有關?
(2)若從這些不反感的人中隨機抽取4人,要求女性人數(shù)不少于男性人數(shù),并設女性人數(shù)為隨機變量ξ,求ξ的所有取值和相應的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中 n=a+b+c+d
p(K2,k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2sin(2x+φ)+1的(-π<ϕ<0)的圖象的一條對稱軸是直線x=
π
8

(1)求φ的值;
(2)求y=f(x)的增區(qū)間;
(3)證明直線5x-2y+c=0與函數(shù)y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(3x-1)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a2+a3+a4=
 

查看答案和解析>>

同步練習冊答案