若α,β為兩個不同的平面,m、n為不同直線,下列推理:
①若α⊥β,m⊥α,n⊥β,則直線m⊥n;
②若直線m∥平面α,直線n⊥直線m,則直線n⊥平面α;
③若直線m∥n,m⊥α,n?β,則平面α⊥平面β;
④若平面α∥平面β,直線m⊥平面β,n?α,則直線m⊥直線n;
其中正確說法的序號是
 
考點:命題的真假判斷與應用
專題:綜合題,簡易邏輯
分析:①通過線面垂直的性質(zhì)和判定,和面面垂直的定義即可判斷;②由線面平行的性質(zhì)和線面垂直的判定,可舉反例即可判斷;③先通過兩條平行線中的一條垂直于一個平面,另一條也垂直于這個平面,再通過面面垂直的判定定理即可得到;④由一直線垂直于兩個平行平面中的一個,也垂直于另一個,再由線面垂直的定義即可.
解答: 解:①由m⊥α,n⊥β且α⊥β,則m與n一定不平行,否則有α∥β,與已知α⊥β矛盾,通過平移使得m與n相交,且設m與n確定的平面為γ,則γ與α和β的交線所成的角即為α與β所成的角,因為α⊥β,所以由面面垂直的定義知m與n所成的角為90°,故①正確;
②若直線m∥平面α,直線n⊥直線m,則直線n∥平面α或直線n?平面α或直線n⊥平面α,故②錯;
③若直線m∥n,m⊥α,則n⊥α,又n?β,故α⊥β,故③正確;
④若平面α∥平面β,直線m⊥平面β,則直線m⊥α,又n?α,故直線m⊥直線n,故④正確.
故答案為:①③④.
點評:本題考查空間直線與平面的位置關系,考查直線與平面平行和垂直的判定和性質(zhì),掌握直線與平面平行和垂直的判定和性質(zhì)是迅速解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列框圖屬于流程圖的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓是C:(x+
3
2+y2=16,點N(
3
,0),Q是圓C上的一動點,QN的垂直平分線交CQ于點M,設點M的軌跡為E.
(1)求軌跡E的方程;
(2)過點P(1,0)的直線l交軌跡E于兩個不同的點A,B,△AOB(O是坐標原點)的面積為S,求面積S的最大值,并求出面積最大時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

《保護法》規(guī)定食品的汞含量不得超過1.00ppm.現(xiàn)從一批羅非魚中隨機地抽出15條作樣本,檢測得各條魚的汞含量的莖葉圖(以小數(shù)點前一位數(shù)字為莖,小數(shù)點前一位數(shù)字為葉)如圖所示:

(l)若某檢查人員從這15條魚中,隨機地抽出3條,求恰有1條魚汞含量超標的概率;
(2)以此15條魚的樣本數(shù)據(jù)來估計這批魚的總體數(shù)據(jù).若從這批魚中任選3條魚,記ξ表示抽到的魚汞含量超標的條數(shù),求ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,0)、B(2,0),點C在y軸的正半軸上,求∠ACB取最大值時,C點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的首項a1=3,若對于任意的正整數(shù)n都有an+1=2an+3.
(1)設bn=an+3,求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a2=4,S6=42.
(1)求數(shù)列的通項公式an
(2)設bn=
2
(n+1)an
,Tn=b1+b2+…+bn,求T10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩袋裝有大小相同的紅球和白球,甲袋裝有2個紅球,2個白球;乙袋裝有2個紅球,n個白球.從甲,乙兩袋中各任取一個球.
(1)若n=3,求取到的2個球全是紅球的概率;
(2)若取到的2個球中至少有1個為紅球的概率是
5
8
,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={((x,y)||x|≤1,|y|≤1,x,y∈R},B={(x,y)|(x-a)2+(y-b)2≤1,x,y∈R,(a,b)∈A},則集合B所表示圖形的面積是
 

查看答案和解析>>

同步練習冊答案