【題目】已知拋物線 的焦點為,準線為,三個點, 中恰有兩個點在上.

(1)求拋物線的標準方程;

(2)過的直線交 兩點,點上任意一點,證明:直線 , 的斜率成等差數(shù)列.

【答案】(1) (2)見解析

【解析】試題分析:(1由對稱關(guān)系可知, 兩點在上,求得拋物線的標準方程為;(2)設(shè)直線的方程為,聯(lián)立拋物線方程,得到韋達定理表示出直線的斜率證明滿足等差中項公式即可。

試題解析:

I因為拋物線 關(guān)于x軸對稱,

所以中只能是兩點在上,

帶入坐標易得,所以拋物線的標準方程為

II證明:拋物線的焦點的坐標為,準線的方程為.

設(shè)直線的方程為, .

,可得,所以,

于是

設(shè)直線的斜率分別為,

一方面,

.

另一方面, .

所以,即直線的斜率成等差數(shù)列

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于C、D兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓)上僅有個點到直線的距離為,則實數(shù)的取值范圍是( )

A. B. C. D.

【答案】B

【解析】圓心到直線距離為 ,所以要有個點到直線的距離為,需 ,選B.

點睛:與圓有關(guān)的長度或距離的最值問題的解法.一般根據(jù)長度或距離的幾何意義,利用圓的幾何性質(zhì)數(shù)形結(jié)合求解.

型】單選題
結(jié)束】
15

【題目】設(shè)為雙曲線的兩個焦點,若, , 是正三角形的三個頂點,則雙曲線的漸近線方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 的左、右焦點分別為 , 為橢圓上任一點,且的最大值的取值范圍是,其中,則橢圓的離心率的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形的邊長為,點分別在邊上, 的交點為, ,現(xiàn)將沿線段折起到位置,使得

(1)求證:平面平面;

(2)求五棱錐的體積;

(3)在線段上是否存在一點,使得平面?若存在,求;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廣場有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環(huán)境標志,小李,小王設(shè)計的底座形狀分別為, ,經(jīng)測量米, 米, 米,

(I)求的長度;

(Ⅱ)若環(huán)境標志的底座每平方米造價為元,不考慮其他因素,小李,小王誰的設(shè)計建造費用最低(請說明理由),最低造價為多少?(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓C 的一個頂點與拋物線的焦點重合, 分別是橢圓的左、右焦點,且離心率,過橢圓右焦點的直線l與橢圓C交于兩點.

(1)求橢圓C的方程;

(2),求直線l的方程;

(3)是橢圓C經(jīng)過原點O的弦, ,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十八屆五中全會公報指出:努力促進人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策。提高生殖健康、婦幼保健、托幼等公共服務(wù)水平。為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機調(diào)查了200位30到40歲的公務(wù)員,得到情況如下表:

(Ⅰ)是否有99%以上的把握認為“生二胎與性別有關(guān)”,并說明理由;

(Ⅱ)將頻率看作概率,現(xiàn)從社會上隨機抽取甲、乙、丙3位30到40 歲的男公務(wù)員,求這三人中至少有一人要生二胎的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的焦點在x軸上,焦距為,實軸長為2

(1)求雙曲線的標準方程與漸近線方程。

(2)若點 在該雙曲線上運動,且, ,求以 , 為相鄰兩邊的平行四邊形 的頂點 的軌跡.

查看答案和解析>>

同步練習冊答案