【題目】如圖,已知橢圓ab>0的離心率,過點(diǎn)的直線與原點(diǎn)的距離為

1求橢圓的方程

2已知定點(diǎn),若直線與橢圓交于C、D兩點(diǎn)是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由

【答案】1;(2存在,使得以為直徑的圓過點(diǎn)

【解析】

試題分析:(1兩點(diǎn)的坐標(biāo)可得直線方程,根據(jù)點(diǎn)到線的距離公式可得間的關(guān)系式,再結(jié)合離心率及可解得的值.(2將直線方程與橢圓方程聯(lián)立消去整理為關(guān)于的一元二次方程根據(jù)有2個交點(diǎn)可知其判別式大于0得的范圍由上式可得兩根之和,兩根之積為直徑的圓過點(diǎn),根據(jù)直線垂直斜率相乘等于可得的值若滿足前邊判別式大于0得的的范圍說明存在,否則說明不存在

試題解析解析:(1直線方程為

依題意 解得

橢圓方程為

2假若存在這樣的值,由

設(shè)、,,則

要使以為直徑的圓過點(diǎn),當(dāng)且僅當(dāng)時,則,即

式代入整理解得經(jīng)驗證,,使成立

綜上可知,存在,使得以為直徑的圓過點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,都是邊長為2的等邊三角形,設(shè)在底面的射影為.

(1)求證:中點(diǎn);

(2)證明:;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣城出租車的收費(fèi)標(biāo)準(zhǔn)是:起步價是元(乘車不超過千米);行駛千米后,每千米車費(fèi)1.2元;行駛千米后,每千米車費(fèi)1.8元.

(1)寫出車費(fèi)與路程的關(guān)系式;

(2)一顧客計劃行程千米,為了省錢,他設(shè)計了三種乘車方案:

①不換車:乘一輛出租車行千米;

②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;

③分三段乘車:每乘千米換一次車.

問哪一種方案最省錢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

如圖,在正四面體中,分別是棱的中點(diǎn).

1)求證:四邊形是平行四邊形;

2)求證:平面;

3)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a、b是方程2lg2 xlg x410的兩個實根,求lg(ab 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機(jī)動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車輛限行的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個面內(nèi),并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)若在定義域內(nèi)存在實數(shù),滿足,則稱為局部奇函數(shù)

1)已知二次函數(shù),試判斷是否為局部奇函數(shù),并說明理由;

2)是定義在區(qū)間上的局部奇函數(shù),求實數(shù)的取值范圍;

3)為定義域為上的局部奇函數(shù),求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , , ,點(diǎn)邊的中點(diǎn),將沿折起,使平面平面,連接, , ,得到如圖所示的幾何體.

(Ⅰ)求證: 平面

(Ⅱ)若, 與其在平面內(nèi)的正投影所成角的正切值為,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案