【題目】十八屆五中全會公報指出:努力促進人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策。提高生殖健康、婦幼保健、托幼等公共服務(wù)水平。為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機調(diào)查了200位30到40歲的公務(wù)員,得到情況如下表:
(Ⅰ)是否有99%以上的把握認為“生二胎與性別有關(guān)”,并說明理由;
(Ⅱ)將頻率看作概率,現(xiàn)從社會上隨機抽取甲、乙、丙3位30到40 歲的男公務(wù)員,求這三人中至少有一人要生二胎的概率.
附:
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:(Ⅰ)根據(jù)題意列出列聯(lián)表,代入求臨界值的公式,求出觀測值,利用觀測值同臨界值進行比較,即可得出結(jié)論;(Ⅱ)由題意可知:一名男公務(wù)員要生二胎的概率為,一名男公務(wù)員不生二胎的概率為,記事件為這三人中至少有一人要生二胎,則這三人中至少有一人要生二胎的概率為.
試題解析:(Ⅰ)由于,故沒有99%以上的把握認為“生二胎與性別有關(guān)”.
(Ⅱ)由題意可得,一名男公務(wù)員要生二胎的概率為,一名男公務(wù)員不生二胎的概率為.
記事件為這三人中至少有一人要生二胎,則所求概率為,這三人中至少有一人要生二胎的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知與曲線相切的直線,與軸, 軸交于兩點, 為原點, , ,( ).
(1)求證:: 與相切的條件是: .
(2)求線段中點的軌跡方程;
(3)求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點為,準(zhǔn)線為,三個點, , 中恰有兩個點在上.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過的直線交于, 兩點,點為上任意一點,證明:直線, , 的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學(xué)生稱為“書蟲”,低于60 min的學(xué)生稱為“懶蟲”,
(1)求x的值并估計全校3 000名學(xué)生中“書蟲”大概有多少名學(xué)生?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“書蟲”與性別有關(guān):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),某腫瘤機構(gòu)隨機抽取了40人做相關(guān)調(diào)查,其中不吸煙人數(shù)與吸煙人數(shù)相同,已知吸煙人數(shù)中,患肺癌與不患肺癌的比為;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
(1)現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人進行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)是否有99.9%的把握認為患肺癌與吸煙有關(guān)?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知和具有線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: , ,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點的雙曲線 的右焦點為 ,右頂點為 ,( 為原點)
(1)求雙曲線 的方程;
(2)若直線 : 與雙曲線恒有兩個不同的交點 和 ,且,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com