【題目】已知等差數(shù)列{an}中,a5=9,a7=13,等比數(shù)列{bn}的通項(xiàng)公式bn=2n1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Sn

【答案】(Ⅰ)解:由題知 , 解得a1=1,d=2,
∴an=2n﹣1,n∈N*,
(Ⅱ)解:由(I)知,an+bn=(2n﹣1)+2n1 ,
由于{an}的前n項(xiàng)和為 =n2 ,

∴{bn}是以1為首項(xiàng),以2為公比的等比數(shù)列,
∴數(shù)列{bn}的前n項(xiàng)和為 =2n﹣1,
∴{an+bn}的前n項(xiàng)和Sn=n2+2n﹣1
【解析】(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式列方程組,解方程組可得首項(xiàng)和公差,進(jìn)而得到所求通項(xiàng)公式;(Ⅱ)分組求和,結(jié)合等差數(shù)列和等比數(shù)列的求和公式即可得到所求和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為θ為參數(shù)),直線(xiàn)l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)求的定義域;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條寬為的兩平行河岸有村莊和供電站,村莊的直線(xiàn)距離都是與河岸垂直,垂足為現(xiàn)要修建電纜,從供電站向村莊供電.修建地下電纜、水下電纜的費(fèi)用分別是萬(wàn)元萬(wàn)元.

(1) 如圖①,已知村莊原來(lái)鋪設(shè)有電纜,現(xiàn)先從處修建最短水下電纜到達(dá)對(duì)岸后后,再修建地下電纜接入原電纜供電,試求該方案總施工費(fèi)用的最小值;

(2) 如圖②,點(diǎn)在線(xiàn)段上,且鋪設(shè)電纜的線(xiàn)路為.若,試用表示出總施工費(fèi)用(萬(wàn)元)的解析式,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在(﹣1,1)上的函數(shù)f(x)滿(mǎn)足: ,當(dāng)x∈(﹣1,0)時(shí),有f(x)>0,且 .設(shè) ,則實(shí)數(shù)m與﹣1的大小關(guān)系為(
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若,且,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

已知函數(shù).

(1)求證: ;

(2)若對(duì)恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在(0,+∞)上的函數(shù)f(x)滿(mǎn)足下面三個(gè)條件:
①對(duì)任意正數(shù)a,b,都有f(a)+f(b)=f(ab);
②當(dāng)x>1時(shí),f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)試用單調(diào)性定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(III)求滿(mǎn)足f(log4x)>2的x的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案