【題目】選修44:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為A,B兩點(diǎn)的極坐標(biāo)分別為.

()求圓C的普通方程和直線的直角坐標(biāo)方程;

()點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最大值.

【答案】(Ⅰ) , ; (Ⅱ) .

【解析】試題分析() 利用 將圓C的參數(shù)方程化為普通方程,由 ,將直線 的極坐標(biāo)方程化為直角坐標(biāo)方程;()寫(xiě)出點(diǎn)P的坐標(biāo) ,由點(diǎn)到直線的距離求出P點(diǎn)到直線的距離,求出最大值,從而得到 面積的最大值.

試題解析:(Ⅰ)由消去參數(shù)t,得

所以圓C的普通方程為

,得,

,化成直角坐標(biāo)系為,所以直線l的直角坐標(biāo)方程為

(Ⅱ) 化為直角坐標(biāo)為在直線l上,并且,…7分

設(shè)P點(diǎn)的坐標(biāo)為,

P點(diǎn)到直線l的距離為 ,

,

所以面積的最大值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究塞卡病毒(Zika virus)某種疫苗的過(guò)程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)癥狀的情況,做接種試驗(yàn),試驗(yàn)設(shè)計(jì)每天接種一次,連續(xù)接種3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).

(1)若出現(xiàn)癥狀即停止試驗(yàn),求試驗(yàn)至多持續(xù)一個(gè)接種周期的概率;

(2)若在一個(gè)接種周期內(nèi)出現(xiàn)3次 癥狀,則這個(gè)接種周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)3個(gè)周期,設(shè)接種試驗(yàn)持續(xù)的接種周期數(shù)為 ,求 的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求的方程;

(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓兩點(diǎn),使得,再過(guò)作直線,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),實(shí)數(shù)是常數(shù).

(Ⅰ)若=2,函數(shù)圖像上是否存在兩條互相垂直的切線,并說(shuō)明理由.

(Ⅱ)若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿足下列條件的直線方程:
(1)求經(jīng)過(guò)直線l1:x+3y﹣3=0,l2:x﹣y+1=0的交點(diǎn),且平行于直線2x+y﹣3=0的直線l方程;
(2)求在兩坐標(biāo)軸上截距相等,且與點(diǎn)A(3,1)的距離為的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形
(Ⅰ)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(Ⅱ)設(shè)D、E分別是線段BC、CC1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使直線DE∥平面A1MC?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(2x﹣1)的定義域?yàn)閇﹣1,4],則函數(shù)f(x)的定義域?yàn)椋ā 。?/span>
A.(﹣3,7]
B.[﹣3,7]
C.(0,]
D.[0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程,并求的焦點(diǎn)的直角坐標(biāo);

(2)已知點(diǎn),若直線相交于兩點(diǎn),且,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案