【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n+2-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an·log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.
【答案】(1);(2).
【解析】試題分析:
(1)由題意,分類討論n≥2和n=1兩種情況可得數(shù)列{an}的通項(xiàng)公式為an=2n+1,n∈N*.
(2)結(jié)合(1)的結(jié)果可知bn=anlog2an=(n+1)·2n+1,錯(cuò)位相減可得數(shù)列{bn}的前n項(xiàng)和Tn=n·2n+2.
試題解析:
(1)由題意,Sn=2n+2-4,
n≥2時(shí),an=Sn-Sn-1=2n+2-2n+1=2n+1,
當(dāng)n=1時(shí),a1=S1=23-4=4,也適合上式,
∴數(shù)列{an}的通項(xiàng)公式為an=2n+1,n∈N*.
(2)∵bn=anlog2an=(n+1)·2n+1,
∴Tn=2·22+3·23+4·24+…+n·2n+(n+1)·2n+1,①
2Tn=2·23+3·24+4·25+…+n·2n+1+(n+1)·2n+2.②
②-①得,
Tn=-23-23-24-25-…-2n+1+(n+1)·2n+2
=-23-+(n+1)·2n+2
=-23-23(2n-1-1)+(n+1)·2n+2
=(n+1)·2n+2-23·2n-1
=(n+1)·2n+2-2n+2=n·2n+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓心在x軸上,半徑為2的圓C位于y軸右側(cè),且與直線x- y+2=0相切.
(1)求圓C的方程.
(2)在圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為萬元,產(chǎn)品價(jià)格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時(shí)間的產(chǎn)銷,得到了的一組統(tǒng)計(jì)數(shù)據(jù)如下表:
(1)請(qǐng)判斷與中,哪個(gè)模型更適合刻畫之間的關(guān)系?可從函數(shù)增長(zhǎng)趨勢(shì)方面給出簡(jiǎn)單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計(jì)當(dāng)日產(chǎn)量時(shí),日銷售額是多少?(結(jié)果保留整數(shù))
參考公式及數(shù)據(jù):線性回歸方程中,,.
,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列前n項(xiàng),前2n項(xiàng),前3n項(xiàng)的和分別為Sn,S2n,S3n,求證:=Sn(S2n+S3n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,且(n∈N*)
(1)求的通項(xiàng)公式;
(2)數(shù)列滿足,求數(shù)列的前n項(xiàng)和;
(3)若對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 和 .假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 是正方形, 平面, , , , 分別是, , 的中點(diǎn).
()求四棱錐的體積.
()求證:平面平面.
()在線段上確定一點(diǎn),使平面,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 某人打靶,射擊10次,擊中7次,那么此人中靶的概率為0.7
B. 一位同學(xué)做擲硬幣試驗(yàn),擲6次,一定有3次“正面朝上”
C. 某地發(fā)行福利彩票,回報(bào)率為,有人花了100元錢買彩票,一定會(huì)有47元的回報(bào)
D. 概率等于1的事件不一定為必然事件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com