【題目】如圖,在四棱錐中, 是正方形, 平面, , , , 分別是, , 的中點.
()求四棱錐的體積.
()求證:平面平面.
()在線段上確定一點,使平面,并給出證明.
【答案】(1)(2)見解析(3)當為線段的中點時,滿足使平面
【解析】試題分析:(1)根據(jù)線面垂直確定高線,再根據(jù)錐體體積公式求體積(2)先尋找線線平行,根據(jù)線面平行判定定理得線面平行,最后根據(jù)面面平行判定定理得結論(3)由題意可得平面,即,取線段的中點,則有,而,根據(jù)線面垂直判定定理得平面
試題解析:()解:∵平面,
∴.
()證明:∵, 分別是, 的中點.
∴,
由正方形,
∴,
又平面,∴平面,
同理可得: ,
可得平面,
又,
∴平面平面.
()解:當為線段的中點時,滿足使平面,
下面給出證明:取的中點,連接, , .
∵,
∴四點, , , 四點共面,由平面,
∴,
又, ,
∴平面,
∴,
又為等腰三角形, 為斜邊的中點,
∴,
又,
∴平面,即平面.
科目:高中數(shù)學 來源: 題型:
【題目】某縣相鄰兩鎮(zhèn)在一平面直角坐標系下的坐標為A(1,2)、B(4,0),一條河所在直線方程為l:x+2y-10=0,若在河邊l上建一座供水站P使之到A、B兩鎮(zhèn)的管道最省,問供水站P應建在什么地方?此時|PA|+|PB|為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數(shù)關系t=且該食品在4℃的保鮮時間是16小時。已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示。給出以下四個結論:
①該食品在6℃的保鮮時間是8小時;
②當x∈[-6,6]時,該食品的保鮮時間t隨著x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內;
④到了此日14時,甲所購買的食品已然過了保鮮時間。
其中,所有正確結論的序號是__________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成封閉圖形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,設p:實數(shù)x滿足x2﹣4ax+3a2<0,q:實數(shù)x滿足(x﹣3)2<1.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象經過點,且函數(shù)= 是偶函數(shù)
(1)求的解析式;
(2)已知,求函數(shù)在的最大值和最小值
(3)函數(shù)的圖象上是否存在這樣的點,其橫坐標是正整數(shù),縱坐標是一個完全平方數(shù)?如果存在,求出這樣的點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點.
求證:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com