【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 和 .假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?
【答案】
(1)解:記“甲連續(xù)射擊4次,至少1次未擊中目標(biāo)”為事件A1,
由題意知兩人射擊是否擊中目標(biāo),相互之間沒有影響,
射擊4次,相當(dāng)于4次獨(dú)立重復(fù)試驗(yàn),
故P(A1)=1﹣P( )=1﹣ = .
即甲射擊4次,至少1次未擊中目標(biāo)的概率為
(2)解:記“甲射擊4次,恰好擊中目標(biāo)2次”為事件A2,
“乙射擊4次,恰好擊中目標(biāo)3次”為事件B2,
P(A2)= = ,
P(B2)= = .
由于甲、乙設(shè)計(jì)相互獨(dú)立,
故P(A2B2)=P(A2)P(B2)= = .
即兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率為
(3)解:記“乙恰好射擊5次后,被中止射擊”為事件A3,
“乙第i次射擊為擊中”為事件Di,(i=1,2,3,4,5),
則A3=D5D4 ( ),且P(Di)= ,
由于各事件相互獨(dú)立,
故P(A3)=P(D5)P(D4)P( )P( )= × × ×(1﹣ × )= ,
即乙恰好射擊5次后,被中止射擊的概率是
【解析】(1)由題意知,兩人射擊是否擊中目標(biāo),相互之間沒有影響;擊中目標(biāo)的概率分別是 和 ,射擊4次,相當(dāng)于4次獨(dú)立重復(fù)試驗(yàn),根據(jù)獨(dú)立重復(fù)試驗(yàn)和互斥事件的概率公式得到結(jié)果.(2)兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次,表示相互獨(dú)立的兩個(gè)事件同時(shí)發(fā)生,寫出兩個(gè)事件的概率,根據(jù)相互獨(dú)立事件的概率公式得到結(jié)果.(3)乙恰好射擊5次后,被中止射擊,表示最后兩次射擊一定沒有射中,前兩次最多一次沒擊中,這幾個(gè)事件之間是相互獨(dú)立的,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率得到結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.統(tǒng)計(jì)情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | |||
女同學(xué) | |||
總計(jì) |
(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測(cè)試發(fā)現(xiàn):女生甲解答一道幾何題所用的時(shí)間在分鐘,女生乙解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙兩人獨(dú)立解答同一道幾何題,求乙比甲先解答完的概率;
(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,,在底面的射影為的中點(diǎn),是的中點(diǎn).
(1)證明:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n+2-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an·log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點(diǎn)E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點(diǎn)M,那么M一定在直線________上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,點(diǎn),過點(diǎn)M且垂直于CM的直線交圓C于A,B兩點(diǎn),過A,B兩點(diǎn)分別作圓C的切線,兩切線相交于點(diǎn)P,則過點(diǎn)P且平行于AB的直線方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點(diǎn).
(I)求證: .
(II)若, 分別是, 的中點(diǎn),求證: 平面.
(III)若二面角的大小為,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com