已知函數(shù)f(x)滿足f(x+1)=
3
2
+f(x)(x∈R),且f(1)=
5
2
,則數(shù)列{f(n)}(n∈N*)前20項的和為( 。
A、305B、315
C、325D、335
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出{f(n)}是以
5
2
為首項,
3
2
為公差的等差數(shù)列,由此能求出數(shù)列{f(n)}(n∈N*)前20項的和.
解答: 解:∵函數(shù)f(x)滿足f(x+1)=
3
2
+f(x)(x∈R),
且f(1)=
5
2
,
∴f(2)=
3
2
+
5
2

f(3)=
3
2
+
3
2
+
5
2
,…,f(n)=
3
2
+f(n-1),
∴{f(n)}是以
5
2
為首項,
3
2
為公差的等差數(shù)列.
∴數(shù)列{f(n)}(n∈N*)前20項的和S20=20×
5
2
+
20(20-1)
2
×
3
2
=335.
故選:D.
點評:本題考查數(shù)列的前20項和的求法,是中檔題,解題時要認真審題,注意遞推思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
n
+1)n展開式中x3項的系數(shù)是
1
16
,則正整數(shù)n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為k=1的直線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于A、B兩點,若A、B的中點為M(1,3),則雙曲線的漸近線方程為( 。
A、x±
3
y=0
B、
3
x±y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
(2+i)(1-i)2
1-2i
等于( 。
A、2B、-2C、2iD、-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)(x-b)+2,(a<b),若α,β(α<β)是方程f(x)=0的兩個根,則實數(shù)a,b,α,β之間的大小關(guān)系是( 。
A、α<a<b<β
B、a<α<β<b
C、α<b<a<β
D、α<a<β<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將n2個正整數(shù)1、2、3、…、n2(n≥2)任意排成n行n列的數(shù)表.對于某一個數(shù)表,計算某行或某列中的任意兩個數(shù)a、b(a>b)的比值
a
b
,稱這些比值中的最小值為這個數(shù)表的“特征值”.當n=2時,數(shù)表的所有可能的“特征值”的最大值為(  )
A、
4
3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A、20B、30C、40D、50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點,M為此雙曲線上的一點,滿足|MF1|=3|MF2|,那么此雙曲線的離心率的取值范圍是( 。
A、(1,2)
B、(1,2]
C、(0,2)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為調(diào)查某市學(xué)生百米運動成績,從該市學(xué)生中按照男女生比例隨機抽取50名學(xué)生進行百米測試,測試成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)設(shè)m,n表示樣本中兩個學(xué)生的百米測試成績,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根據(jù)有關(guān)規(guī)定,成績小于16秒為達標.如果男女生使用相同的達標標準,則男女生達標情況如附表:
     性別
是否達標
合計
達標 a=24 b=
 
 
不達標 c=
 
d=12  
合計     n=50
根據(jù)上表數(shù)據(jù),能否在犯錯誤的概率不超過0.01的前提下認為“體育達標與性別有關(guān)”?若有,你能否提出一個更好的解決方法來?
附:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828

查看答案和解析>>

同步練習(xí)冊答案