【題目】已知拋物線上一點F為焦點,面積為1.

1)求拋物線C的方程;

2)過點P引圓的兩條切線PA、PB,切線PA、PB與拋物線C的另一個交點分別為A、B,求直線AB斜率的取值范圍.

【答案】12

【解析】

1)由題意可知:,求出p的值,從而得到拋物線C的方程;
2)設(shè)直線PA斜率為,則PA方程為,利用直線PA與圓相切,可得,設(shè)直線PB斜率為,同理得,所以是方程的兩個根,從而得到,,聯(lián)立直線PA與拋物線方程,由韋達(dá)定理得,同理,代入直線AB的斜率公式得,再根據(jù)r的范圍即可求出直線AB斜率的取值范圍.

解:(1)由已知得,,即,解得

所以C的方程為;

2)由(1)得,設(shè)直線斜率為,則方程為,

,直線與圓相切,

設(shè)直線斜率為,同理得

是方程的兩個根,

,

,

設(shè)

,由韋達(dá)定理得,

,同理,

所以,

,,

直線AB斜率的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為O為坐標(biāo)原點.

(1)求橢圓C的方程;

(2)設(shè)點,為橢圓C上的兩個動點,當(dāng)為多少時,點O到直線MN的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)已知處的切線與軸垂直,若方程有三個實數(shù)解、、),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于,兩點,且的面積為16為坐標(biāo)原點).

1)求的方程;

2)直線經(jīng)過的焦點不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,頂點在底面ABCD內(nèi)的射影恰為點C.

1)求證:BC⊥平面ACD1;

2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用“算籌”表示數(shù)是我國古代計數(shù)方法之一,計數(shù)形式有縱式和橫式兩種,如圖1所示.金元時期的數(shù)學(xué)家李冶在《測圓海鏡》中記載:用“天元術(shù)”列方程,就是用算籌來表示方程中各項的系數(shù).所謂“天元術(shù)”,即是一種用數(shù)學(xué)符號列方程的方法,“立天元一為某某”,意即“設(shè)為某某”.如圖2所示的天元式表示方程,其中,…,,表示方程各項的系數(shù),均為籌算數(shù)碼,在常數(shù)項旁邊記一“太”字或在一次項旁邊記一“元”字,“太”或“元”向上每層減少一次冪,向下每層增加一次冪.

試根據(jù)上述數(shù)學(xué)史料,判斷圖3天元式表示的方程是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對一次性購買2臺機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準(zhǔn)備一次性購買2臺這種機(jī)器,F(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

10

20

15

以這50臺機(jī)器維修次數(shù)的頻率代替1臺機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)求 的值;

(2)試猜想的表達(dá)式(用一個組合數(shù)表示),并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形, , 底面, , , 的中點.

(1)求證:平面平面

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案