【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需把函數(shù)y=sin(2x+ )的圖象( )
A.向左平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向右平移 個長度單位
【答案】B
【解析】解:y=sin(2x+ )=sin2(x+ ),y=sin(2x﹣ )=sin2(x﹣ ),所以將y=sin(2x+ )的圖象向右平移 個長度單位得到y(tǒng)=sin(2x﹣ )的圖象,
故選B.
【考點精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)已知 是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)y=|3x﹣1|的圖象,并利用圖象回答:k為何值時,方程|3x﹣1|=k無解?有一解?有兩解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線的兩個焦點坐標(biāo)是,且離心率為;
(1)求曲線的方程;
(2)設(shè)曲線表示曲線的軸左邊部分,若直線與曲線相交于兩點,求的取值范圍;
(3)在條件(2)下,如果,且曲線上存在點,使,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費用x萬元滿足P= (其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本6(P+ )萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+ )元/件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及數(shù)列{an}的通項公式;
(3)設(shè)bn=(﹣1)n﹣1(n+1)2anan+1(n∈N*),求數(shù)列{bn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a≠b,解關(guān)于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
【答案】{x|0≤x≤1}.
【解析】
將原不等式化簡為(a-b)2(x2-x) ≤0,由條件得到系數(shù)(a-b)2>0,直接解出不等式x2-x≤0即可.
解:將原不等式化為
(a2-b2)x+b2≥(a-b)2x2+2(a-b)bx+b2,
移項,整理后得 (a-b)2(x2-x) ≤0,…
∵ a≠b 即 (a-b)2>0,
∴ x2-x≤0,
即 x(x-1) ≤0.
解此不等式,得解集 {x|0≤x≤1}.
【點睛】
本小題主要考查不等式基本知識,不等式的解法;解題時要注意公式的靈活運用.對于含參的二次不等式問題,先判斷二次項系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進行分解,再比較兩根大小,結(jié)合圖像得到不等式的解集.
【題型】解答題
【結(jié)束】
19
【題目】設(shè)Sn是等差數(shù)列{an}的前n項和,已知與的等比中項為,且與的等差中項為1,求數(shù)列{an}的通項公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線x2﹣ =1(b>0)的左、右焦點分別為F1、F2 , 直線l過F2且與雙曲線交于A、B兩點.
(1)若l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè)b= ,若l的斜率存在,M為AB的中點,且 =0,求l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】省環(huán)保廳對、、三個城市同時進行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據(jù)中隨機抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個數(shù);
(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com