(本小題滿分12分)
已知函數(shù)
(1)若
為
的極值點(diǎn),求實(shí)數(shù)
的值
(2)若
是函數(shù)
的一個(gè)零點(diǎn), 且
, 其中
, 則求
的值
(3)若當(dāng)
時(shí)
,求
的取值范圍
(I)
………………………………………………………………2分
∵
在
處取得極值,∴
即
解得
經(jīng)檢驗(yàn)
符合題意,∴
…………………………………………………4分
(II)
,
,
在
上單調(diào)遞增……………………………………………………5分
又
且
由二分法可得
…………………………7分
又
…………………………………………………8分
(III)設(shè)
,
,
,
(。┤
,當(dāng)
時(shí),
恒成立
故
在
上為增函數(shù),
所以,
時(shí),
,即
.………………………………9分
(ii)若
,
方程
有2根
或
且
此時(shí)若
,則
,故
在該區(qū)間為減函數(shù)
所以
時(shí),
即
與題設(shè)
矛盾
綜上,滿足條件的
的取值范圍是
…………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(12分)已知函數(shù)f(x)=
ax
3-bx
2 +(2-b)x+1,在x=x
2處取得極大值,在x=x
2處取得極小值,且0<x
1<1<x
2<2。
(1)證明:a>0;
(2)若z=a+2b,求z的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
的圖象在
處的切線與
軸平行.
(1)求
與
的關(guān)系式及
f(
x)的極大值;
(2)若函數(shù)
在區(qū)間
上有最大值為
,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
,當(dāng)
時(shí),有極大值
.
(1) 求
的值; (2)求函數(shù)
的極小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
,且
在
處取得極值.
(1)求
的值;
(2)若當(dāng)
[-1,
]時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分14分)
已知函數(shù)
,
為實(shí)數(shù))有極值,且在
處的切線與直線
平行.
(1)求實(shí)數(shù)
a的取值范圍;
(2)是否存在實(shí)數(shù)
a,使得函數(shù)
的極小值為1,若存在,求出實(shí)數(shù)
a的值;若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(12分)設(shè)函數(shù)
的圖象與y軸交點(diǎn)為p,且曲線在p點(diǎn)處的切線方程為
.若函數(shù)在
處取得極值-16,求函數(shù)解析式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知函數(shù)
,若
,則函數(shù)的值域?yàn)?u>
▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知函數(shù)
有極大值又有極小值,則
的取值范圍是
.
查看答案和解析>>