【題目】已知定義在上的偶函數(shù)滿足,且時(shí),,則函數(shù)在上的所有零點(diǎn)之和為( )
A.B.C.D.
【答案】C
【解析】
把函數(shù)g(x)f(x)﹣cosπx的零點(diǎn)轉(zhuǎn)化為兩函數(shù)y=f(x)與y=cosπx圖象交點(diǎn)的橫坐標(biāo),再由已知可得函數(shù)f(x)的對稱軸與周期,作出函數(shù)y=f(x)與y=cosπx的圖象,數(shù)形結(jié)合得答案.
函數(shù)g(x)f(x)﹣cosπx的零點(diǎn),即方程f(x)﹣cosπx=0的根,
也就是兩函數(shù)y=f(x)與y=cosπx圖象交點(diǎn)的橫坐標(biāo).
由f(x)是定義在R上的偶函數(shù),且
可得函數(shù)周期為2.
又當(dāng)時(shí),,
作出函數(shù)y=f(x)與y=cosπx的圖象如圖:
由圖可知,函數(shù)g(x)f(x)﹣cosπx
在區(qū)間[﹣2,4]上的所有零點(diǎn)之和為﹣2+2+2=6.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三實(shí)驗(yàn)班的60名學(xué)生期中考試的語文、數(shù)學(xué)成績都在內(nèi),其中語文成績分組區(qū)間是:,,,,.其成績的頻率分布直方圖如圖所示,這60名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:
分組區(qū)間 | |||||
24 | 3 | ||||
數(shù)學(xué)人數(shù) | 12 | 4 |
(1)求圖中的值及數(shù)學(xué)成績在的人數(shù);
(2)語文成績在的3名學(xué)生均是女生,數(shù)學(xué)成績在的4名學(xué)生均是男生,現(xiàn)從這7名學(xué)生中隨機(jī)選取4名學(xué)生,事件為:“其中男生人數(shù)不少于女生人數(shù)”,求事件發(fā)生的概率;
(3)若從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取2名學(xué)生,且這2名學(xué)生中數(shù)學(xué)成績在的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備投產(chǎn)一種新產(chǎn)品,經(jīng)測算,已知每年生產(chǎn)萬件的該種產(chǎn)品所需要的總成本(萬元),依據(jù)產(chǎn)品尺寸,產(chǎn)品的品質(zhì)可能出現(xiàn)優(yōu)、中、差三種情況,隨機(jī)抽取了1000件產(chǎn)品測量尺寸,尺寸分別在,,,,,,(單位:)中,經(jīng)統(tǒng)計(jì)得到的頻率分布直方圖如圖所示.
產(chǎn)品的品質(zhì)情況和相應(yīng)的價(jià)格(元/件)與年產(chǎn)量之間的函數(shù)關(guān)系如下表所示.
產(chǎn)品品質(zhì) | 立品尺寸的范圍 | 價(jià)格與產(chǎn)量的函數(shù)關(guān)系式 |
優(yōu) | ||
中 | ||
差 |
以頻率作為概率解決如下問題:
(1)求實(shí)數(shù)的值;
(2)當(dāng)產(chǎn)量確定時(shí),設(shè)不同品質(zhì)的產(chǎn)品價(jià)格為隨機(jī)變量,求隨機(jī)變量的分布列;
(3)估計(jì)當(dāng)年產(chǎn)量為何值時(shí),該公司年利潤最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,.
(1)求證:;
(2)若為線段上的一點(diǎn),,,,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紀(jì)念章從某年某月某日起開始上市,通過市場調(diào)査,得到該紀(jì)念章每枚的市場價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:
上市時(shí)間天 | |||
市場價(jià)元 |
(1)根據(jù)上表數(shù)計(jì),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價(jià)與上市時(shí)間的變化關(guān)系并說明理由:①;②;③;④;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的支持度有差異;
(2)從調(diào)查的100人中年齡在15~25,25~35兩組按分層抽樣的方法抽取6人參加某項(xiàng)活動(dòng)現(xiàn)從這6人中隨機(jī)抽2人,求這2人中至少1人的年齡在25~35之間的概率.
參考數(shù)據(jù):
其中n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).,且.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)與函數(shù)在公共點(diǎn)處有相同的切線,且在上恒成立.
(i)求和的值;(為函數(shù)的導(dǎo)函數(shù))
(ii)求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個(gè))和溫度()的7組觀測數(shù)據(jù),其散點(diǎn)圖如所示:
根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識(shí),可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);
(2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時(shí)間內(nèi)的氣溫在之間(包括與),估計(jì)該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,,.)
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com