如圖莖葉圖記錄了甲、乙兩組各五名學生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的平均數(shù)為17,乙組數(shù)據(jù)的中位數(shù)為17,則xy=
 
考點:眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:根據(jù)莖葉圖中數(shù)據(jù),根據(jù)平均數(shù)公式和中位數(shù)的概念,即可求出x,y的值.
解答: 解:∵甲組數(shù)據(jù)的平均數(shù)為17,
1
5
(9+12+24+27+10+x)=17
,
解得x=3,
由莖葉圖可知,乙組數(shù)據(jù)的中位數(shù)為10+y,
即10+y=17,
解得y=7,
則xy=3×7=21,
故答案為:21.
點評:本題主要考查莖葉圖的應用,根據(jù)平均數(shù)和中位數(shù)的概念是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a3=3,a2+a8=10,則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結論:
①由曲線y=x2、y=1圍成的區(qū)域的面積為
1
3
; 
②“x=2”是“向量
a
=(x-1,1)與向量
b
=(3,x+1)平行”的充分非必要條件; 
③命題“a、b都是有理數(shù)”的否定是“a、b都不是有理數(shù)”;
④函數(shù)f(θ)=sin2θ+
4
sin2θ
的最小值等于4.
其中正確結論的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若tanA•tanB>1,則△ABC的形狀( 。
A、一定是銳角三角形
B、一定是直角三角形
C、一定是鈍角三角形
D、可能是銳角三角形,也可能是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A、B、C的對面分別為a,b,c,向量
m
=(
a
sinC
,c-2b),向量
n
=(sin2C,1),且滿足
m
n

(Ⅰ)求A;
(Ⅱ)當a=1時,求△ABC的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(
3
cosx,-2.5),
n
=(sinx,-0.5),函數(shù)f(x)=(
m
+
n
)•
n

(Ⅰ)求f(x)的解析式與最小正周期;
(Ⅱ)在△ABC中,內角A,B,C所對的邊分別為a,b,c,其中A為銳角,a=2
3
,c=4,且f(A)恰好在[0,
π
2
]上取得最大值,求角B的值以及△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(2,3)且與直線2x+y-1=0垂直的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a,b,c分別是角A,B,C的對邊,且2cosBcosC(1-tanBtanC)=1.
(1)求角A的大小;
(2)若a=2
7
,△ABC的面積為2
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=2,設Sn為數(shù)列{an}的前n項和,對于任意的n≥2,n∈N+,Sn+1+Sn-1=2(Sn+1)都成立,則Sn=
 

查看答案和解析>>

同步練習冊答案