19.點(diǎn)P是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),且△PF1F2的內(nèi)切圓半徑為1,當(dāng)P在第一象限時(shí),P點(diǎn)的縱坐標(biāo)為(  )
A.2B.$\frac{7}{3}$C.$\frac{8}{3}$D.3

分析 利用橢圓方程求出a,c,△PF1F2的內(nèi)切圓半徑為1,利用三角形的面積公式,化簡(jiǎn)求解即可.

解答 解:|PF1|+|PF2|=10,|F1F2|=6,
點(diǎn)P是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),且△PF1F2的內(nèi)切圓半徑為1,
${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$(|PF1|+|PF2|+|F1F2|)×1=8=$\frac{1}{2}$|F1F2|•yP,
yP=$\frac{8}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查圓錐曲線(xiàn)與圓的故選的綜合應(yīng)用,橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若cos(65°+α)=$\frac{2}{3}$,其中α為第三象限角,則cos(115°-α)+sin(α-115°)=$\frac{{\sqrt{5}-2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果方程$\frac{{x}^{2}}{4-m}$+$\frac{{y}^{2}}{m-3}$=1表示雙曲線(xiàn),則m的取值范圍是( 。
A.(3,4)B.(-∞,3)∪(4,+∞)C.(4,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且     AC=BC=$\sqrt{2}$,O、M分別為AB和VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求直線(xiàn)MC與平面VAB所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.點(diǎn)P在以F為焦點(diǎn)的拋物線(xiàn)y2=4x上運(yùn)動(dòng),點(diǎn)Q在直線(xiàn)x-y+5=0上運(yùn)動(dòng),則||PF+|PQ|的最小值為(  )
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金t(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式P=3$\sqrt{t}$,Q=t.今將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資x(萬(wàn)元).求:
(1)經(jīng)營(yíng)甲、乙兩種商品的總利潤(rùn)y(萬(wàn)元)關(guān)于x的函數(shù)表達(dá)式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤(rùn)y達(dá)到最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,則cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖,則f(-$\frac{π}{6}$)+f(-$\frac{π}{12}$)+f(0)=( 。
A.$\frac{1-\sqrt{2}}{2}$B.$\frac{1+\sqrt{2}}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊長(zhǎng),$a=2\sqrt{3}$,C=30°,$sinBsinC={cos^2}\frac{A}{2}$.則b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案