10.如果方程$\frac{{x}^{2}}{4-m}$+$\frac{{y}^{2}}{m-3}$=1表示雙曲線,則m的取值范圍是( 。
A.(3,4)B.(-∞,3)∪(4,+∞)C.(4,+∞)D.(-∞,3)

分析 根據(jù)雙曲線定義可知,要使方程表示雙曲線4-m與m-3同號(hào),進(jìn)而求得m的范圍.

解答 解:方程$\frac{{x}^{2}}{4-m}$+$\frac{{y}^{2}}{m-3}$=1表示雙曲線,
即(4-m)(m-3)<0,
解得:m>4或m<3,
m的取值范圍(-∞,3)∪(4,+∞),
故選B.

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程及性質(zhì),考查解不等式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.根據(jù)下列條件,求直線的方程:
(Ⅰ)過直線l1:2x-3y-1=0和l2:x+y+2=0的交點(diǎn),且垂直于直線2x-y+7=0;
(Ⅱ)過點(diǎn)(-3,1),且在兩坐標(biāo)軸上的截距之和為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x<0}\\{x+1,x≥0}\end{array}\right.$,則f[f(-1)]=( 。
A.0B.3C.4D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.
(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A-SCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有下列四個(gè)命題:
①若A∩B=∅,則A,B之中至少有一個(gè)為空集;
②在回歸直線y=2x+1中,x增加1個(gè)單位時(shí),y平均增加3個(gè)單位;
③若p且q為假命題,則p,q均為假命題;
④在△ABC中,若A>B,則sinA>sinB.
其中是真命題的有:④.(請(qǐng)將真命題的序號(hào)填在答題卷的橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.甲、乙兩艘輪船都要在某個(gè)泊位?6小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在?坎次粫r(shí)必須等待的概率是$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中,是真命題的是( 。
A.?x0∈R,使得e${\;}^{{x}_{0}}$≤0B.$sinx+\frac{2}{sinx}≥2\sqrt{2}(x≠kπ,k∈Z)$
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.點(diǎn)P是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),且△PF1F2的內(nèi)切圓半徑為1,當(dāng)P在第一象限時(shí),P點(diǎn)的縱坐標(biāo)為( 。
A.2B.$\frac{7}{3}$C.$\frac{8}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正方體ABCD-A1B1C1D1的棱長(zhǎng)為6,O1為正方形A1B1C1D1的中心,則四棱錐O1-ABCD的外接球的表面積為( 。
A.B.324πC.81πD.$\frac{243}{2}π$

查看答案和解析>>

同步練習(xí)冊(cè)答案