【題目】近年來(lái),“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益與投入(單位:萬(wàn)元)滿足,乙城市收益與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元)。

(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;

(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

【答案】(1)43.5(2)當(dāng)甲城市投資72萬(wàn)元,乙城市投資48萬(wàn)元時(shí),總收益最大,且最大收益為44萬(wàn)元

【解析】試題分析:(1)把代入可得總收益

(2)設(shè)甲城市投資萬(wàn)元,則乙城市投資萬(wàn)元,可得總收益為,由得到滿足題意的x的范圍,通過(guò)二配方得到關(guān)于函數(shù),可得最值

試題解析:(1)當(dāng)時(shí),此時(shí)甲城市投資50萬(wàn)元,乙城市投資70萬(wàn)元

所以總收益 =43.5(萬(wàn)元)

(2)由題知,甲城市投資萬(wàn)元,乙城市投資萬(wàn)元

所以

依題意得,解得

,則

所以

當(dāng),即萬(wàn)元時(shí), 的最大值為44萬(wàn)元

所以當(dāng)甲城市投資72萬(wàn)元,乙城市投資48萬(wàn)元時(shí),總收益最大,且最大收益為44萬(wàn)元

點(diǎn)晴:解決函數(shù)模型應(yīng)用的解答題,要注意以下幾點(diǎn):①讀懂實(shí)際背景,將實(shí)際問(wèn)題轉(zhuǎn)化為函數(shù)模型.②對(duì)題目中自變量的范圍要求準(zhǔn)確.③在求解的過(guò)程中結(jié)合定義域求出函數(shù)的最值.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于,兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14)

如圖的幾何體中, 平面, 平面為等邊三角形, 的中點(diǎn).

1)求證: 平面;

2)求證:平面平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:

若抽取學(xué)生人,成績(jī)分為(優(yōu)秀),(良好),(及格)三個(gè)等次,設(shè)分別表示數(shù)學(xué)成績(jī)與地理成績(jī),例如:表中地理成績(jī)?yōu)?/span>等級(jí)的共有(人),數(shù)學(xué)成績(jī)?yōu)?/span>等級(jí)且地理成績(jī)?yōu)?/span>等級(jí)的共有8人.已知均為等級(jí)的概率是.

(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是,求的值;

(2)已知,,求數(shù)學(xué)成績(jī)?yōu)?/span>等級(jí)的人數(shù)比等級(jí)的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長(zhǎng)為4,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果存在函數(shù)為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:

①函數(shù)存在“線性覆蓋函數(shù)”;

②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無(wú)數(shù)個(gè);

為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;

④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則

其中所有正確結(jié)論的序號(hào)是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角AB,C對(duì)應(yīng)的邊分別是ab,c,已知cos 2A3cos(BC)1.

(1)求角A的大;

(2)△ABC的面積S5b5,求sin Bsin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若,且在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,求證:在區(qū)間上有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的圖象在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),求證:;

(3)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案