【題目】已知函數(shù)(為自然對數(shù)的底數(shù))有兩個極值點,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】A
【解析】,
若函數(shù)有兩個極值點,
則和在有2個交點,
令,則,
在遞減,而,
故時, ,即, 遞增,
時, ,即, 遞減,
故,
而時, , 時, ,
若和在有2個交點
只需,
點晴:本題考查函數(shù)導數(shù)與函數(shù)的極值點的個數(shù)問題:可利用數(shù)形結合的辦法判斷交點個數(shù),如果函數(shù)較為復雜,可結合導數(shù)知識確定極值點和單調區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數(shù)的值域問題處理. 恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數(shù)最值處理.也可構造新函數(shù)然后利用導數(shù)來求解.注意利用數(shù)形結合的數(shù)學思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)若函數(shù)存在相同的零點,求的值;
(Ⅱ)若存在兩個正整數(shù),當時,有與同時成立,求的最大值及取最大值時的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;
(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要分析學生初中升學考試的數(shù)學成績對高一年級數(shù)學學習有什么影響,在高一年級學生中隨機抽取10名學生,分析他們入學的數(shù)學成績(x)和高一年級期末數(shù)學考試成績(y)(如下表):
(1)畫出散點圖;
(2)判斷入學成績(x)與高一期末考試成績(y)是否有線性相關關系;
(3)如果x與y具有線性相關關系,求出回歸直線方程;
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
y | 65 | 78 | 52 | 85 | 92 | 89 | 73 | 98 | 56 | 75 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測.
車間 | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的普通方程和曲線的直角坐標方程;
(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校隨機抽取20個班,調查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com