【題目】已知函數(shù),其中

)求的單調(diào)區(qū)間;

)若在上存在,使得成立,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)函數(shù)的單調(diào)區(qū)間與導(dǎo)數(shù)的符號(hào)相關(guān),而函數(shù)的導(dǎo)數(shù)為,故可以根據(jù)的符號(hào)討論導(dǎo)數(shù)的符號(hào),從而得到函數(shù)的單調(diào)區(qū)間.(2)若不等式 上有解,那么在上, .但上的單調(diào)性不確定,故需分 三種情況討論.

解析:(1)

①當(dāng)時(shí),在, 上單調(diào)遞增;

②當(dāng)時(shí),在;在;所以上單調(diào)遞減,在上單調(diào)遞增.

綜上所述,當(dāng)時(shí), 的單調(diào)遞增區(qū)間為,當(dāng)時(shí), 的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(2)若在上存在,使得成立,則上的最小值小于.

①當(dāng),即時(shí),由(1)可知上單調(diào)遞增, 上的最小值為,由,可得,

②當(dāng),即時(shí),由(1)可知上單調(diào)遞減, 上的最小值為,由,可得 ;

③當(dāng),即時(shí),由(1)可知上單調(diào)遞減,在上單調(diào)遞增, 上的最小值為,因?yàn)?/span>,所以,即,即,不滿足題意,舍去.

綜上所述,實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;

2當(dāng)時(shí),求函數(shù)的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),則下列結(jié)論中正確結(jié)論的序號(hào)是__________

;

②直線與平面所成角的正弦值為定值

③當(dāng)為定值,則三棱錐的體積為定值;

④異面直線所成的角的余弦值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù)為

若直線與曲線恒相切于同一定點(diǎn),求的方程;

⑵ 若,求證:當(dāng)時(shí), 恒成立;

⑶ 若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,ABBC,E、F分別為A1C1和BC的中點(diǎn)

(1)求證:平面ABE平面B1BCC1

(2)求證:C1F//平面ABE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.

(1)求x2的系數(shù)取最小值時(shí)n的值;

(2)當(dāng)x2的系數(shù)取得最小值時(shí),求f(x)展開式中x的奇次冪項(xiàng)的系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對(duì)的邊,且滿足.

1)求角的大;

2)若,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案