從0,1,2,3,4,5,6,7,8,9中任取七個不同的數(shù),則這七個數(shù)的中位數(shù)是6的概率為
 
考點:眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:根據(jù)條件確定當中位數(shù)為6時,對應的條件即可得到結論.
解答: 解:從0,1,2,3,4,5,6,7,8,9中任取七個不同的數(shù),有
C
7
10
種方法,
若七個數(shù)的中位數(shù)是6,則只需從0,1,2,3,4,5,選3個,從7,8,9中選3個不同的數(shù)即可,有
C
3
6
C
3
3
種方法,則這七個數(shù)的中位數(shù)是6的概率P=
C
3
6
C
3
3
C
7
10
=
1
6

故答案為:
1
6
點評:本題主要考查古典概率的計算,注意中位數(shù)必須是按照從小到大的順序進行排列的.比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對應的邊分別為a,b,c,則“a≤b”是“sinA≤sinB”的( 。
A、充分必要條件
B、充分非必要條件
C、必要非充分條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設U為全集,A,B是集合,則“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的(  )
A、充分而不必要的條件
B、必要而不充分的條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(3,1),則
b
-
a
=(  )
A、(-2,1)
B、(2,-1)
C、(2,0)
D、(4,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a•2x  ,x≥0
2-x  ,x<0
(a∈R),若f[f(-1)]=1,則a=( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,右頂點為A,上頂點為B,已知|AB|=
3
2
|F1F2|.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經過點F1,經過點F2的直線l與該圓相切于點M,|MF2|=2
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx-x2+ax(其中無理數(shù)e=2.71828…,a∈R).
(I)若函數(shù)f(x)在(0,e]上不是單調函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)證明:設函數(shù)f(x)的圖象在x=x0處的切線為l,證明:f(x)的圖象上不存在位于直線l上方的點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,b>0,且
1
a
+
1
b
=
ab

(Ⅰ)求a3+b3的最小值;
(Ⅱ)是否存在a,b,使得2a+3b=6?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax3+3x2-x恰好有三個單調區(qū)間,那么a的取值范圍是
 

查看答案和解析>>

同步練習冊答案