【題目】如圖,矩形中,為的中點,將沿直線翻折成,連結(jié),為的中點,則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得;
②翻折過程中,的長是定值;
③若,則;
④若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.
【答案】②④
【解析】
對于①,取AD中點E,連接EC交MD與F,可得到EN⊥NF,又EN⊥CN,且三線NE,NF,NC共面共點,不可能,
對于②,可得由∠NEC=∠MAB1(定值),NEAB1(定值),AM=EC(定值),由余弦定理可得NC是定值.
對于③,取AM中點O,連接B1O,DO,易得AM⊥面ODB1,即可得OD⊥AM,從而AD=MD,顯然不成立.
對于④:當平面B1AM⊥平面AMD時,三棱錐B1﹣AMD的體積最大,可得球半徑為1,表面積是4π.
對于①:如圖1,取AD中點E,連接EC交MD與F,則NE∥AB1,NF∥MB1,
如果CN⊥AB1,可得到EN⊥NF,又EN⊥CN,且三線NE,NF,NC共面共點,不可能,故①錯.
對于②:如圖1,可得由∠NEC=∠MAB1(定值),NEAB1(定值),AM=EC(定值),
由余弦定理可得NC2=NE2+EC2﹣2NEECcos∠NEC,所以NC是定值,故②正確.
對于③:如圖2,取AM中點O,連接B1O,DO,易得AM⊥面ODB1,即可得OD⊥AM,從而AD=MD,顯然不成立,可得③不正確.
對于④:當平面B1AM⊥平面AMD時,三棱錐B1﹣AMD的體積最大,易得AD中點H就是三棱錐B1﹣AMD的外接球的球心,球半徑為1,表面積是4π.故④正確.
故答案為:②④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上的點到焦點的最長距離為.
(1)求橢圓C的方程;
(2)過點P(0,2)的直線l(不過原點O)與橢圓C交于兩點A、B,M為線段AB的中點.
(。┳C明:直線OM與l的斜率乘積為定值;
(ⅱ)求△OAB面積的最大值及此時l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為。
(Ⅰ)求的極坐標方程;
(Ⅱ)設(shè)點的極坐標為,求面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點到短軸的端點的距離為,離心率為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,過點作平行于軸的直線,交直線于點,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.
(1)求曲線的方程;
(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中所有正確的序號是_________
①兩直線的傾斜角相等,則斜率必相等;
②若動點到定點和定直線的距離相等,則動點的軌跡是拋物線;
③已知、是橢圓的兩個焦點,過點的直線與橢圓交于、兩點,則的周長為;
④曲線的參數(shù)方程為為參數(shù),則它表示雙曲線且漸近線方程為;
⑤已知正方形,則以、為焦點,且過、兩點的橢圓的離心率為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線所圍成的封閉區(qū)域為D.
(1)求區(qū)域D的面積;
(2)設(shè)過點的直線與曲線C交于兩點P、Q,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,并且內(nèi)切于定圓.
(1)求動圓圓心的軌跡方程;
(2)若上存在兩個點,,(1)中曲線上有兩個點,,并且,,三點共線,,,三點共線,,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關(guān)?
(2)在“鍛煉達標”的學(xué)生中,按男女用分層抽樣方法抽出10人,進行體育鍛煉體會交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會交流的10人中,隨機選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com