【題目】已知中,,P為線段AC上任意一點,則的范圍是( )
A. [1,4] B. [0,4] C. [-2,4] D.
【答案】D
【解析】
根據(jù)題意,由余弦定理可得|BC|的長,進而可得△ABC為直角三角形,據(jù)此建立坐標系,
求出A、C的坐標以及線段AC的方程,設(shè)P(x,y),由數(shù)量積的坐標計算公式可得的表
達式,結(jié)合二次函數(shù)的性質(zhì)分析可得答案.
根據(jù)題意,△ABC中,|AB|=2,|AC|=4,∠BAC=60°,
則|BC|2=4+16﹣2×2×4×cos60°=12,
則|BC|=2,
則△ABC為直角三角形;
以B為原點,BC為x軸,BA為y軸建立坐標系,則A(0,2),C(2,0);
則線段AC的方程為+=1,(0≤x≤2)
設(shè)P(x,y),
則,
又由0≤x≤2,
則﹣≤≤4,
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】為了適應(yīng)高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分數(shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(2)在上述樣本中,學校從成績?yōu)?/span>的學生中隨機抽取人進行學習交流,求這人來自同一個班級的概率.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)在區(qū)間上的最小值為1,求實數(shù)m的值;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),不等式對任意恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的標準方程是.
(1)求它的焦點坐標和準線方程;
(2)直線過已知拋物線的焦點且傾斜角為45°,且與拋物線的交點為,求的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品,根據(jù)預測可知,該產(chǎn)品的產(chǎn)量平穩(wěn)增長,記2015年為第1年,第x年與年產(chǎn)量(萬件)之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 |
4.00 | 5.52 | 7.00 | 8.49 |
現(xiàn)有三種函數(shù)模型:,,
(1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取這兩年的數(shù)據(jù)求出相應(yīng)的函數(shù)解析式;
(2)因受市場環(huán)境的影響,2020年的年產(chǎn)量估計要比預計減少30%,試根據(jù)所建立的函數(shù)模型,估計2020年的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分別根據(jù)下列條件求實數(shù)a的取值范圍.
(1)A∩B=;(2)A(A∩B).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,有一邊長為2的正方形ABCD,E是邊AD的中點,將沿著直線BE折起至位置(如圖2),此時恰好,點在底面上的射影為O.
(1)求證:;
(2)求直線與平面BCDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用清水漂洗衣服上殘留的洗衣液,對用一定量的清水漂洗一次的效果作如下假定:用1個單位量的水可洗掉衣服上殘留洗衣液質(zhì)量的一般,用水越多漂洗效果越好,但總還有洗衣液殘留在衣服上.設(shè)用單位量的清水漂洗一次后,衣服上殘留的洗衣液質(zhì)量與本次漂洗前殘留的洗衣液質(zhì)量之比為函數(shù),其中.
(1)試規(guī)定的值,并解釋其實際意義;
(2)根據(jù)假定寫出函數(shù)應(yīng)該滿足的條件和具有的性質(zhì),并寫出滿足假定的一個指數(shù)函數(shù);
(3)設(shè)函數(shù).現(xiàn)有()單位量的清水,可供漂洗一次,也可以把水平均分成2份后先后漂洗兩次,試確定哪種方式漂洗效果更好?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使;如果沒有,請說明理由?(注:區(qū)間的長度).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com