【題目】已知拋物線的標(biāo)準(zhǔn)方程是.

(1)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(2)直線過已知拋物線的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為,求的長度.

【答案】(1)焦點(diǎn)為,準(zhǔn)線方程: ;(2)12.

【解析】試題分析:

1拋物線的標(biāo)準(zhǔn)方程為,焦點(diǎn)在軸上,開口向右, ,即可求出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

2)現(xiàn)根據(jù)題意給出直線的方程,代入拋物線,求出兩交點(diǎn)的橫坐標(biāo)的和,然后利用焦半徑公式求解即可

試題解析:

(1)拋物線的標(biāo)準(zhǔn)方程是y2=6x,焦點(diǎn)在x軸上,開口向右,2p=6,∴=

∴焦點(diǎn)為F(,0),準(zhǔn)線方程:x=﹣,

(2)∵直線L過已知拋物線的焦點(diǎn)且傾斜角為45°,

∴直線L的方程為y=x﹣,

代入拋物線y2=6x化簡得x2﹣9x+=0,

設(shè)A(x1,y1),B(x2,y2),則x1+x2=9,

所以|AB|=x1+x2+p=9+3=12.

故所求的弦長為12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,M、N分別為棱BC和棱CC1的中點(diǎn),則異面直線AC和MN所成的角為( )

A. 30° B. 45° C. 90° D. 60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m,n為兩條不同的直線,,為兩個(gè)不同的平面,則下列命題中正確的有  

,, ,

,, ,

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,則{an}的前50項(xiàng)的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓的頂點(diǎn), 為橢圓的左焦點(diǎn)且橢圓經(jīng)過點(diǎn).

1)求橢圓的方程

2)過橢圓的右頂點(diǎn)作斜率為的直線交橢圓于另一點(diǎn),連結(jié)并延長交橢圓于點(diǎn)當(dāng)的面積取得最大值時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,an+1bn=bn+1an+bn , 且 (n∈N*),則數(shù)列{an}的前2n項(xiàng)和S2n取最大值時(shí),n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,其年齡頻率分布直方圖如圖所示,

(1)求圖中的值并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動(dòng),再從這20名中采用簡單隨機(jī)抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及均值.

查看答案和解析>>

同步練習(xí)冊答案