設函數(shù)f(x)=
3
sin
πx
m
,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2,則m的取值范圍是( 。
A、(-∞,-6)∪(6,+∞)
B、(-∞,-4)∪(4,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-∞,-1)∪(1,+∞)
考點:正弦函數(shù)的定義域和值域
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意可得,f(x0)=±
3
,且
πx0
m
=kπ+
π
2
,k∈z,再由題意可得當m2最小時,|x0|最小,而|x0|最小為
1
2
|m|,可得m2
1
4
m2+3,由此求得m的取值范圍.
解答: 解:由題意可得,f(x0)=±
3
,且
πx0
m
=kπ+
π
2
,k∈z,即 x0=
2k+1
2
m.
再由x02+[f(x0)]2<m2,可得當m2最小時,|x0|最小,而|x0|最小為
1
2
|m|,
∴m2
1
4
m2+3,∴m2>4.
求得 m>2,或m<-2,
故選:C.
點評:本題主要正弦函數(shù)的圖象和性質(zhì),函數(shù)的零點的定義,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=60°,AC=4,BC=2
3
,則△ABC的面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合{a,b,c,d}={1,2,3,4},且下列四個關系:
①a=1;②b≠1;③c=2;④d≠4有且只有一個是正確的,則符合條件的有序數(shù)組(a,b,c,d)的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a是一個各位數(shù)字都不是0且沒有重復數(shù)字三位數(shù),將組成a的3個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,輸出的結(jié)果b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對應的邊分別為a,b,c,則“a≤b”是“sinA≤sinB”的( 。
A、充分必要條件
B、充分非必要條件
C、必要非充分條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實部為-2,虛部為1的復數(shù)所對應的點位于復平面內(nèi)的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b是關于t的方程t2cosθ+tsinθ=0的兩個不等實根,則過A(a,a2),B(b,b2)兩點的直線與雙曲線
x2
cos2θ
-
y2
sin2θ
=1的公共點的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為( 。
A、
17
27
B、
5
9
C、
10
27
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,右頂點為A,上頂點為B,已知|AB|=
3
2
|F1F2|.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點F1,經(jīng)過點F2的直線l與該圓相切于點M,|MF2|=2
2
,求橢圓的方程.

查看答案和解析>>

同步練習冊答案