【題目】如果數(shù)列對于任意,都有,其中為常數(shù),則稱數(shù)列是“間等差數(shù)列”,為“間公差”.若數(shù)列滿足,,.

(1)求證:數(shù)列是“間等差數(shù)列”,并求間公差;

(2)設為數(shù)列的前n項和,若的最小值為-153,求實數(shù)的取值范圍;

(3)類似地:非零數(shù)列對于任意,都有,其中為常數(shù),則稱數(shù)列是“間等比數(shù)列”,為“間公比”.已知數(shù)列中,滿足,,試問數(shù)列是否為“間等比數(shù)列”,若是,求最大的整數(shù)使得對于任意,都有;若不是,說明理由.

【答案】(1)見解析;(2);(3)63.

【解析】

(1)直接利用定義求出數(shù)列為間等差數(shù)列.

(2)利用分類討論思想,利用數(shù)列的前n項和公式求出數(shù)列的和,進一步利用不等量關系求出結果.

(3)利用分類討論思想,進一步求出數(shù)列的通項公式,再利用函數(shù)的單調性求出k的最大值.

(1)若數(shù)列{an}滿足an+an+1=2n﹣35,n∈N*,則:an+1+an+2=2(n+1)﹣35,

兩式相減得:an+2﹣an=2.故數(shù)列{an}是“間等差數(shù)列”,公差d=2.

(2)(i)當n=2k時,

(a1+a2)+(a3+a4)+…+(an﹣1+an)=﹣33﹣29+…+(2n﹣37)=

易知:當n=18時,最小值S18=﹣153.

(ii)當n=2k+1時,

Sn=a1+(a2+a3)+(a4+a5)+…+(an﹣1+an)=a1+(﹣31)+(﹣29)+…+(2n﹣37)=,

當n=17時最小,其最小值為S17=a﹣136,要使其最小值為﹣153,

則:a﹣136≥﹣153,解得:a≥﹣17.

(3)易知:cncn+1=2018(n﹣1,則:cn+1cn+2=2018(n,

兩式相除得:,故數(shù)列{cn}為“間等比數(shù)列”,其間等比為

易求出數(shù)列的通項公式為:,

由于nn+1,則數(shù)列{n}單調遞減.那么,奇數(shù)項和偶數(shù)項都為單調遞減,所以:k>0.

要使數(shù)列為單調遞減數(shù)列.只需2m﹣12m2m+1,

即:,

解得,即最大的整數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】教材曾有介紹:圓上的點處的切線方程為。我們將其結論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應用。已知,直線與橢圓有且只有一個公共點.

(1)求的值;

(2)設為坐標原點,過橢圓上的兩點、分別作該橢圓的兩條切線、,且交于點。當變化時,求面積的最大值;

(3)在(2)的條件下,經(jīng)過點作直線與該橢圓交于、兩點,在線段上存在點,使成立,試問:點是否在直線上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與圓關于直線對稱.

1)求圓的方程;

2)過點作兩條相異直線分別與圓相交于、兩點,若直線的傾斜角互補,問直線與直線是否垂直?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的方程為

(1)當時,試確定曲線的形狀及其焦點坐標;

(2)若直線交曲線于點、,線段中點的橫坐標為,試問此時曲線上是否存在不同的兩點、關于直線對稱?

(3)當為大于1的常數(shù)時,設是曲線上的一點,過點作一條斜率為的直線,又設為原點到直線的距離,分別為點與曲線兩焦點的距離,求證是一個定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;

(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,交于點,交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形沿對角線折成直二面角,下列結論:①異面直線所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結論是______.(寫出你認為正確的所有結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,在軸截得的弦長為2

1)求動圓圓心的軌跡的方程;

2)若為軌跡上一動點,過點作圓的兩條切線分別交軸于,兩點,求面積的最小值,并求出此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于兩點.若為等邊三角形,則的面積為(

A. 8 B. C. D. 16

查看答案和解析>>

同步練習冊答案