【題目】如果數(shù)列對于任意
,都有
,其中
為常數(shù),則稱數(shù)列
是“間等差數(shù)列”,
為“間公差”.若數(shù)列
滿足
,
,
.
(1)求證:數(shù)列是“間等差數(shù)列”,并求間公差
;
(2)設為數(shù)列
的前n項和,若
的最小值為-153,求實數(shù)
的取值范圍;
(3)類似地:非零數(shù)列對于任意
,都有
,其中
為常數(shù),則稱數(shù)列
是“間等比數(shù)列”,
為“間公比”.已知數(shù)列
中,滿足
,
,
,試問數(shù)列
是否為“間等比數(shù)列”,若是,求最大的整數(shù)
使得對于任意
,都有
;若不是,說明理由.
【答案】(1)見解析;(2);(3)63.
【解析】
(1)直接利用定義求出數(shù)列為間等差數(shù)列.
(2)利用分類討論思想,利用數(shù)列的前n項和公式求出數(shù)列的和,進一步利用不等量關系求出結果.
(3)利用分類討論思想,進一步求出數(shù)列的通項公式,再利用函數(shù)的單調性求出k的最大值.
(1)若數(shù)列{an}滿足an+an+1=2n﹣35,n∈N*,則:an+1+an+2=2(n+1)﹣35,
兩式相減得:an+2﹣an=2.故數(shù)列{an}是“間等差數(shù)列”,公差d=2.
(2)(i)當n=2k時,
(a1+a2)+(a3+a4)+…+(an﹣1+an)=﹣33﹣29+…+(2n﹣37)=
易知:當n=18時,最小值S18=﹣153.
(ii)當n=2k+1時,
Sn=a1+(a2+a3)+(a4+a5)+…+(an﹣1+an)=a1+(﹣31)+(﹣29)+…+(2n﹣37)=,
當n=17時最小,其最小值為S17=a﹣136,要使其最小值為﹣153,
則:a﹣136≥﹣153,解得:a≥﹣17.
(3)易知:cncn+1=2018()n﹣1,則:cn+1cn+2=2018(
)n,
兩式相除得:,故數(shù)列{cn}為“間等比數(shù)列”,其間等比為
.
,
易求出數(shù)列的通項公式為:,
由于n>
n+1,則數(shù)列{
n}單調遞減.那么,奇數(shù)項和偶數(shù)項都為單調遞減,所以:k>0.
要使數(shù)列為單調遞減數(shù)列.只需2m﹣1>
2m>
2m+1,
即:,
解得,即最大的整數(shù)
.
科目:高中數(shù)學 來源: 題型:
【題目】教材曾有介紹:圓上的點
處的切線方程為
。我們將其結論推廣:橢圓
上的點
處的切線方程為
,在解本題時可以直接應用。已知,直線
與橢圓
有且只有一個公共點.
(1)求的值;
(2)設為坐標原點,過橢圓
上的兩點
、
分別作該橢圓的兩條切線
、
,且
與
交于點
。當
變化時,求
面積的最大值;
(3)在(2)的條件下,經過點作直線
與該橢圓
交于
、
兩點,在線段
上存在點
,使
成立,試問:點
是否在直線
上,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與圓
關于直線
對稱.
(1)求圓的方程;
(2)過點作兩條相異直線分別與圓
相交于
、
兩點,若直線
、
的傾斜角互補,問直線
與直線
是否垂直?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的方程為
.
(1)當時,試確定曲線
的形狀及其焦點坐標;
(2)若直線交曲線
于點
、
,線段
中點的橫坐標為
,試問此時曲線
上是否存在不同的兩點
、
關于直線
對稱?
(3)當為大于1的常數(shù)時,設
是曲線
上的一點,過點
作一條斜率為
的直線
,又設
為原點到直線
的距離,
分別為點
與曲線
兩焦點的距離,求證
是一個定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)將的方程化為普通方程,將
的方程化為直角坐標方程;
(Ⅱ)已知直線的參數(shù)方程為
,
為參數(shù),且
,
與
交于點
,
與
交于點
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方形沿對角線
折成直二面角,下列結論:①異面直線
與
所成的角為
;②
;③
是等邊三角形;④二面角
的平面角正切值是
;其中正確結論是______.(寫出你認為正確的所有結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點,在
軸截得的弦長為2.
(1)求動圓圓心的軌跡的方程;
(2)若為軌跡
上一動點,過點
作圓
的兩條切線分別交
軸于
,
兩點,求
面積的最小值,并求出此時點
的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com