如圖,是橢圓
的左、右頂點,橢圓
的離心率為
,右準線
的方程為
.
(1)求橢圓方程;
(2)設是橢圓
上異于
的一點,直線
交
于點
,以
為直徑的圓記為
. ①若
恰好是橢圓
的上頂點,求
截直線
所得的弦長;
②設與直線
交于點
,試證明:直線
與
軸的交點
為定點,并求該定點的坐標.
(1) (2) ①
②
解析試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關鍵是找全所需條件. 橢圓中三個未知數(shù)的確定只需兩個獨立條件,由
可得
值,(2) ①求圓被直線所截得弦長時,利用半徑、半弦長、圓心到直線距離三者成勾股列等量關系,先分別確定直線
的方程
與圓K的方程
,②證明直線
與
軸的交點
為定點,實質(zhì)為求直線
與
軸的交點.由①知,點
是關鍵點,不妨設點
的坐標作為參數(shù),先表示直線
的方程,與圓的方程聯(lián)立解出點P的坐標.由
得直線
的斜率,從而得直線
的方程,再令
,得點R的橫坐標為
,利用點M滿足
化簡得
試題解析:(1)由,解得
,故
(2)①因為,所以直線
的方程為
,從而
的方程為
6分
又直線的方程為
,故圓心到直線
的距離為
8分
從而截直線
所得的弦長為
9分
②證:設,則直線
的方程為
,則點P的坐標為
,又直線
的斜率為
,而
,
所以,從而直線
的方程為
12分
令,得點R的橫坐標為
13分
又點M在橢圓上,所以,即
,故
,
所以直線與
軸的交點
為定點,且該定點的坐標為
15分
考點:橢圓方程,直線與圓錐曲線位置關系,圓的弦長
科目:高中數(shù)學 來源: 題型:解答題
設直線l:x-y+m=0與拋物線C:y2=4x交于不同兩點A,B,F為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-,點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQ,BQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,A,D,N三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線在點
,
處的切線垂直相交于點
,直線
與橢圓
相交于
,
兩點.
(1)求拋物線的焦點
與橢圓
的左焦點
的距離;
(2)設點到直線
的距離為
,試問:是否存在直線
,使得
,
,
成等比數(shù)列?若存在,求直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左、右焦點分別為
,離心率為
,P是橢圓上一點,且
面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線
垂直,試判斷直線
與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓與雙曲線
有公共的焦點,過橢圓E的右頂點作任意直線l,設直線l交拋物線
于M、N兩點,且
.
(1)求橢圓E的方程;
(2)設P是橢圓E上第一象限內(nèi)的點,點P關于原點O的對稱點為A、關于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com