如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

(1) (2) ①

解析試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關鍵是找全所需條件. 橢圓中三個未知數(shù)的確定只需兩個獨立條件,由可得值,(2) ①求圓被直線所截得弦長時,利用半徑、半弦長、圓心到直線距離三者成勾股列等量關系,先分別確定直線的方程與圓K的方程,②證明直線軸的交點為定點,實質(zhì)為求直線軸的交點.由①知,點是關鍵點,不妨設點的坐標作為參數(shù),先表示直線的方程,與圓的方程聯(lián)立解出點P的坐標.由得直線的斜率,從而得直線的方程,再令,得點R的橫坐標為,利用點M滿足化簡得
試題解析:(1)由,解得,故
(2)①因為,所以直線的方程為,從而的方程為 6分
又直線的方程為,故圓心到直線的距離為  8分
從而截直線所得的弦長為   9分
②證:設,則直線的方程為,則點P的坐標為,又直線的斜率為,而,
所以,從而直線的方程為 12分
,得點R的橫坐標為      13分
又點M在橢圓上,所以,即,故,
所以直線軸的交點為定點,且該定點的坐標為      15分
考點:橢圓方程,直線與圓錐曲線位置關系,圓的弦長

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設直線lxym=0與拋物線Cy2=4x交于不同兩點A,B,F為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-,點P的軌跡為曲線C.

(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQ,BQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,A,DN三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設一個焦點為,且離心率的橢圓上下兩頂點分別為,直線交橢圓兩點,直線與直線交于點.
(1)求橢圓的方程;
(2)求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線在點,處的切線垂直相交于點,直線與橢圓相交于,兩點.

(1)求拋物線的焦點與橢圓的左焦點的距離;
(2)設點到直線的距離為,試問:是否存在直線,使得,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點,動點軸上的正射影為點,且滿足直線.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓經(jīng)過點,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右焦點分別為,過點的直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設直線l交拋物線于M、N兩點,且
(1)求橢圓E的方程;
(2)設P是橢圓E上第一象限內(nèi)的點,點P關于原點O的對稱點為A、關于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷