已知橢圓:
的離心率為
,右焦點(diǎn)為
,右頂點(diǎn)
在圓
:
上.
(Ⅰ)求橢圓和圓
的方程;
(Ⅱ)已知過(guò)點(diǎn)的直線
與橢圓
交于另一點(diǎn)
,與圓
交于另一點(diǎn)
.請(qǐng)判斷是否存在斜率不為0的直線
,使點(diǎn)
恰好為線段
的中點(diǎn),若存在,求出直線
的方程;若不存在,說(shuō)明理由.
(Ⅰ),
;(Ⅱ)不存在
解析試題分析:(Ⅰ)由圓方程可知圓心為
,即
,又因?yàn)殡x心率為
,可得
,根據(jù)橢圓中關(guān)系式
,可求
。橢圓方程即可求出。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/60/8/1rket2.png" style="vertical-align:middle;" />,則右頂點(diǎn)為
,將其代入圓的方程可求半徑
。(Ⅱ)設(shè)出直線方程
,然后和橢圓方程聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程。再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/04/e/zvpca1.png" style="vertical-align:middle;" />是其中一個(gè)交點(diǎn),所以方程的一個(gè)根為2。用中點(diǎn)坐標(biāo)公式求點(diǎn)
的坐標(biāo),再將其代入圓
方程。解出
的值。若
則說(shuō)明存在滿足條件的直線
可求出其方程,若
,則說(shuō)明不存在滿足條件的直線
。法二:假設(shè)存在,由已知可得
,因?yàn)辄c(diǎn)
為線段
的中點(diǎn),所以
,因?yàn)辄c(diǎn)
在橢圓上可推導(dǎo)得
,與
矛盾,故假設(shè)不成立。
試題解析:(Ⅰ)由題意可得, 1分
又由題意可得,
所以, 2分
所以, 3分
所以橢圓的方程為
. 4分
所以橢圓的右頂點(diǎn)
, 5分
代入圓的方程,可得
,
所以圓的方程為
. 6分
(Ⅱ)法1:
假設(shè)存在直線:
滿足條件, 7分
由得
8分
設(shè),則
, 9分
可得中點(diǎn), 11分
由點(diǎn)在圓
上可得
化簡(jiǎn)整理得 13分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/32/9/t7evc1.png" style="vertical-ali
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為
,離心率為
,P是橢圓上一點(diǎn),且
面積的最大值等于2.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)M(0,2)作直線與直線
垂直,試判斷直線
與橢圓的位置關(guān)系5
(3)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是拋物線
上的兩個(gè)點(diǎn),點(diǎn)
的坐標(biāo)為
,直線
的斜率為
.設(shè)拋物線
的焦點(diǎn)在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過(guò)
兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為
. 判斷四邊形
是否為梯形,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的離心率為
,長(zhǎng)軸長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點(diǎn),試問(wèn):在y軸正半軸上是否存在一個(gè)定點(diǎn)M滿足
,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓與雙曲線
有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線
于M、N兩點(diǎn),且
.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足且
=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),
,動(dòng)點(diǎn)G滿足
.
(Ⅰ)求動(dòng)點(diǎn)G的軌跡的方程;
(Ⅱ)已知過(guò)點(diǎn)且與
軸不垂直的直線l交(Ⅰ)中的軌跡
于P,Q兩點(diǎn).在線段
上是否存在點(diǎn)
,使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓及定點(diǎn)
,點(diǎn)
是圓
上的動(dòng)點(diǎn),點(diǎn)
在
上,且滿足
,
點(diǎn)的軌跡為曲線
。
(1)求曲線的方程;
(2)若點(diǎn)關(guān)于直線
的對(duì)稱點(diǎn)在曲線
上,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、
分別是橢圓
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若
.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線
與橢圓交于
、
兩點(diǎn)(
在第一象限內(nèi)),又
、
是此橢圓上兩點(diǎn),并且滿足
,求證:向量
與
共線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com