【題目】函數f(x)是R上的偶函數,且當x>0時,函數的解析式為f(x)= .
(1)判斷并證明f(x)在(0,+∞)上的單調性;
(2)求當x<0時,函數的解析式.
【答案】(1) f(x)在(0,+∞)上是減函數(2) f(x)=-+x(x<0).
【解析】試題分析:(1)利用單調性定義判斷f(x)在(0,+∞)上的單調性;(2) 設x<0,則-x>0,
從而有f(-x)=f(x)=-+x,得到所求的表達式.
試題解析:
(1)證明 設0<x1<x2,則
f(x1)-f(x2)=(-x1)-(-x2)= ,
∵0<x1<x2,∴x1x2>0,x2-x1>0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上是減函數.
(2)解 設x<0,則-x>0,
∴f(-x)=--x,
又f(x)為偶函數,
∴f(-x)=f(x)=-+x
即f(x)=-+x(x<0).
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若,CE∶EB=1∶4,求CE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線, .
(1)求證:對,直線與圓總有兩個不同的交點;
(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數,使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.
(1)求矩形的外接圓的方程;
(2)已知直線(),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(﹥﹥0)的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數滿足:對任意、恒成立,當時,.
(1)求證在上是單調遞增函數;
(2)已知,解關于的不等式;
(3)若,且不等式對任意恒成立.求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】吉安一中舉行了一次“環(huán)保知識競賽”活動,為了解本了次競賽學生成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為分)作為樣本(樣本容量為)進行統(tǒng)計. 按照 的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(圖中僅列出了得分在的數據).
(1)求樣本容量和頻率分布直方圖中的的值;
(2)在選取的樣本中,從競賽學生成績是分以上(含分)的同學中隨機抽取名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設表示所抽取的名同學中得分在的學生人數,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數關系;
(2)求當x為何值時y取得最大值,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com