精英家教網 > 高中數學 > 題目詳情

【題目】隨著城市地鐵建設的持續(xù)推進,市民的出行也越來越便利.根據大數據統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數關系:,其中.

(1)若平均每趟地鐵的載客人數不超過1500人,試求發(fā)車時間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

【答案】1t=4.2)當發(fā)車時間間隔為7min時,平均每趟地鐵每分鐘的凈收益最大,最大凈收益為260.

【解析】

1)分段考慮的解;

2)凈收益也是分段函數,將其寫出,分別考慮每段函數的在對應的范圍內的最大值.

: 19≤t≤15時,1800≤1500,不滿足題意,舍去.

4≤t<9時,1800-15(9-t)2≤1500,即

解得t≥9+2()t≤9-2

4≤t <9tN.

t=4.

(2)由題意可得

4≤t <9,t =7時,=260()

9≤t≤15,t =9時,=220()

:(1)若平均每趟地鐵的載客人數不超過1500人,發(fā)車時間間隔為4min.

(2)問當發(fā)車時間間隔為7min時,平均每趟地鐵每分鐘的凈收益最大,最大凈收益為260.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知四棱錐中,底面,,,.

(1)當變化時,點到平面的距離是否為定值?若是,請求出該定值;若不是,請說明理由;

(2)當直線與平面所成的角為45°時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機模擬的方法估計事件發(fā)生的概率.利用電腦隨機產生整數0,1,2,3四個隨機數,分別代表“瓷、都、文、明”這四個字,以每三個隨機數為一組,表示取卡片三次的結果,經隨機模擬產生了以下18組隨機數:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在離心率為的橢圓上,則該橢圓的內接八邊形面積的最大值為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列的前項和為,對任意,點都在函數 的圖象上.

1)求數列的通項公式;

2)若數列,求數列的前項和;

3)已知數列滿足,若對任意,存在使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結束.

(1)求第一次試驗恰摸到一個紅球和一個白球概率;

(2)記試驗次數為,求的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過的直線交橢圓、兩點,若的最大值為5,則b的值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2014年聯(lián)想集團以28億收購摩托羅拉移動公司,并計劃投資30億元來發(fā)展改品牌,2014年摩托羅拉手機的銷售量為100萬部,據專家預測,從2015年起,摩托羅拉手機的銷售量每年比上上一年增加100萬部,每年的銷售利潤比上一年減少10%,已知2014年銷售利潤平均每部為300.

1)若2014年看作第一年,第n年的銷售利潤為多少?

2)到2020年年底,中國聯(lián)想集團能否通過摩托羅拉手機實現盈利?(即銷售利潤超過總投資)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正三棱柱中,、點中點,點為四邊形內(包含邊界)的動點則以下結論正確的是( )

A.

B.平面,則動點的軌跡的長度等于

C.異面直線,所成角的余弦值為

D.若點到平面的距離等于,則動點的軌跡為拋物線的一部分

查看答案和解析>>

同步練習冊答案