【題目】如圖,正三棱柱中,、點(diǎn)中點(diǎn),點(diǎn)為四邊形內(nèi)(包含邊界)的動(dòng)點(diǎn)則以下結(jié)論正確的是( )

A.

B.平面,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度等于

C.異面直線,所成角的余弦值為

D.若點(diǎn)到平面的距離等于,則動(dòng)點(diǎn)的軌跡為拋物線的一部分

【答案】BCD

【解析】

根據(jù)空間向量的加減法運(yùn)算以及通過(guò)建立空間直角坐標(biāo)系求解,逐項(xiàng)判斷,進(jìn)而可得到本題答案.

解析:對(duì)于選項(xiàng)A,,選項(xiàng)A錯(cuò)誤;

對(duì)于選項(xiàng)B,過(guò)點(diǎn)的平行線交于點(diǎn)

為坐標(biāo)原點(diǎn),分別為軸的正方向建立空間直角坐標(biāo)系

設(shè)棱柱底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,則,,,所以,

,∴,

,解得

因?yàn)?/span>平面,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度等于.選項(xiàng)B正確.

對(duì)于選項(xiàng)C,在選項(xiàng)A的基礎(chǔ)上,,,,,所以,

因?yàn)?/span>,所以異面直線所成角的余弦值為,選項(xiàng)C正確.

對(duì)于選項(xiàng)D,設(shè)點(diǎn)E在底面ABC的射影為,作垂直于,垂足為F,若點(diǎn)E到平面的距離等于,即有,又因?yàn)樵?/span>中,,得,其中等于點(diǎn)E到直線的距離,故點(diǎn)E滿足拋物線的定義,另外點(diǎn)E為四邊形內(nèi)(包含邊界)的動(dòng)點(diǎn),所以動(dòng)點(diǎn)E的軌跡為拋物線的一部分,故D正確.

故選:BCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車(chē)時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車(chē)時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,試求發(fā)車(chē)時(shí)間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7.現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校,對(duì)學(xué)生進(jìn)行視力檢查.

() 求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;

() 若從抽取的6所學(xué)校中隨即抽取2所學(xué)校作進(jìn)一步數(shù)據(jù)

①列出所有可能抽取的結(jié)果;

②求抽取的2所學(xué)校沒(méi)有大學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開(kāi)端.某種植戶對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.

(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?

(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列三個(gè)命題:(1)如果一個(gè)平面內(nèi)有無(wú)數(shù)條直線平行于另一個(gè)平面,則這兩個(gè)平面平行;(2)一個(gè)平面內(nèi)的任意一條直線都與另一個(gè)平面不相交,則這兩個(gè)平面平行;(3)一個(gè)平面內(nèi)有不共線的三點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行;其中正確命題的個(gè)數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,橢圓的長(zhǎng)軸長(zhǎng)與焦距之比為,過(guò)的直線交于兩點(diǎn).

(1)當(dāng)的斜率為時(shí),求的面積;

(2)當(dāng)線段的垂直平分線在軸上的截距最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間()之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得:(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;

(2)工廠利用分層抽樣的方法從樣本的前3組中抽出6個(gè)零件,標(biāo)上記號(hào),并從這6個(gè)零件中再抽取2個(gè),求再次抽取的2個(gè)零件中恰有1個(gè)尺寸不超過(guò)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為矩形,OE分別為AD,PB的中點(diǎn),平面平面ABCD,.

1)求證:平面PCD;

2)求證:平面PCD;

3)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案