【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù) 的圖象上.

1)求數(shù)列的通項(xiàng)公式;

2)若數(shù)列,求數(shù)列的前項(xiàng)和;

3)已知數(shù)列滿足,若對任意,存在使得成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2 ;(3.

【解析】

1)將點(diǎn)代入函數(shù)的解析式得到,令,由可求出的值,令,由,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式;

2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求出數(shù)列的前項(xiàng)和;

3)利用分組求和法與裂項(xiàng)法求出數(shù)列的前項(xiàng)和,由題意得出,判斷出數(shù)列各項(xiàng)的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實(shí)數(shù)的取值范圍.

1)將點(diǎn)代入函數(shù)的解析式得到.

當(dāng)時(shí),,即,解得

當(dāng)時(shí),由,

上述兩式相減得,得,即.

所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,;

2,

因此,①

,②

由①②得,

所以;

3

的前項(xiàng)和,

.

因?yàn)?/span>,,,

當(dāng)時(shí),,

,

,則,

當(dāng)時(shí),,此時(shí),數(shù)列為單調(diào)遞減數(shù)列,

,即

那么當(dāng)時(shí),數(shù)列為單調(diào)遞減數(shù)列,此時(shí),則.

因此,數(shù)列的最大值為.

,函數(shù)單調(diào)遞增,

此時(shí),函數(shù)的最大值為

因?yàn)閷θ我獾?/span>,存在,.

所以,解得,因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)在(1)的條件下,求證:;

(3)當(dāng)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為 (t為參數(shù)),C在點(diǎn)(1,1)處的切線為l,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),證明:函數(shù)不可能存在兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求證:平面ABCD;

(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有五個(gè)不同的根,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某種書籍每冊的成本費(fèi)(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

表中,.

為了預(yù)測印刷20千冊時(shí)每冊的成本費(fèi),建立了兩個(gè)回歸模型:,.

(1)根據(jù)散點(diǎn)圖,你認(rèn)為選擇哪個(gè)模型預(yù)測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中選擇的模型,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時(shí)每冊的成本費(fèi).

附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在某學(xué)院大一年級名學(xué)生中進(jìn)行了抽樣調(diào)查發(fā)現(xiàn)喜歡甜品的占.這名學(xué)生中南方學(xué)生共。南方學(xué)生中有人不喜歡甜品.

(1)完成下列列聯(lián)表

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

北方學(xué)生

合計(jì)

(2)根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

(3)已知在被調(diào)查的南方學(xué)生中有名數(shù)學(xué)系的學(xué)生其中名不喜歡甜品;名物理系的學(xué)生,其中名不喜歡甜品.現(xiàn)從這兩個(gè)系的學(xué)生中,各隨機(jī)抽取,記抽出的人中不喜歡甜品的人數(shù)為的分布列和數(shù)學(xué)期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C是橢圓W: 上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案