【題目】從裝有大小相同的2個(gè)紅球和6個(gè)白球的袋子中,每摸出2個(gè)球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(1)求第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球概率;
(2)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望.
【答案】(1);(2)的分布列為
1 | 2 | 3 | 4 | |
【解析】
試題分析:(1)由題意知,袋子中共有8個(gè)球,記“第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球”為事件A,則根據(jù)古典概型計(jì)算公式,得.
(2)由題意知,每次試驗(yàn)中不放回地摸出兩個(gè)球,直到摸出的球中有紅球,因?yàn)榇兄挥袃蓚(gè)紅球,所以最多需要進(jìn)行四次試驗(yàn),第一次試驗(yàn)的結(jié)果可能有“一個(gè)紅球一個(gè)白球”或“兩個(gè)紅球”,第二次試驗(yàn)要在第一次試驗(yàn)沒有出紅球情況下進(jìn)行,則袋中剩下4個(gè)白球和2個(gè)紅球,結(jié)果可能為“一個(gè)紅球一個(gè)白球”或“兩個(gè)紅球”,同理第三次試驗(yàn)要在前兩次沒有出現(xiàn)紅球下進(jìn)行,則袋中剩下2個(gè)白球和2個(gè)紅球,結(jié)果能為“一個(gè)紅球一個(gè)白球”或“兩個(gè)紅球”,第四次試驗(yàn)要在前三次試驗(yàn)沒有出現(xiàn)紅球下進(jìn)行,則袋中只剩下2個(gè)紅球,結(jié)果為“兩個(gè)紅球”,所以的值為1、2、3、4,根據(jù)古典概型的計(jì)算公式,得,,,,從而可列出的分布列,并求出其數(shù)學(xué)期望.
試題解析:(1)
(2)由題意可知的值分別為1、2、3、4,則,,,
所以的分布列為
的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心C(1,2),且經(jīng)過點(diǎn)(0,1) (Ⅰ)寫出圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(2,﹣1)作圓C的切線,求切線的方程及切線的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn= (an﹣1)(a為常數(shù),且a≠0,a≠1);
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= +1,若數(shù)列{bn}為等比數(shù)列,求a的值;
(3)若數(shù)列{bn}是(2)中的等比數(shù)列,數(shù)列cn=(n﹣1)bn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線.(1)求曲線的普通方程;(2)若點(diǎn)在曲線上,點(diǎn) ,當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=a﹣ ,
(1)若x∈[ ,+∞),①判斷函數(shù)g(x)=f(x)﹣2x的單調(diào)性并加以證明;②如果f(x)≤2x恒成立,求a的取值范圍;
(2)若總存在m,n使得當(dāng)x∈[m,n]時(shí),恰有f(x)∈[2m,2n],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(1)解不等式f(x)≥﹣2;
(2)對(duì)任意x∈R,都有f(x)≤x﹣a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.
B.y=e﹣x
C.y=lg|x|
D.y=﹣x2+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且b=c,∠A的平分線為AD,若 =m .
(1)當(dāng)m=2時(shí),求cosA
(2)當(dāng) ∈(1, )時(shí),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點(diǎn),P,Q是單位圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點(diǎn)Q的坐標(biāo)是 ,求 的值;
(Ⅱ)設(shè)函數(shù) ,求f(α)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com