【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓、兩點(diǎn),若的最大值為5,則b的值為( )
A. 1 B. C. D. 2
【答案】C
【解析】
由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點(diǎn)的弦中通徑的長(zhǎng)最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可.
由0<b<2可知,焦點(diǎn)在x軸上,
∵過F1的直線l交橢圓于A,B兩點(diǎn),
則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8﹣|AB|.
當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,
此時(shí)|AB|=b2,則5=8﹣b2,
解得b,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:其中研究成果正確的是( )
A.同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)椋ī?/span>1,1),且f(x)是偶函數(shù)
B.同學(xué)乙發(fā)現(xiàn):對(duì)于任意的x∈(﹣1,1),都有
C.同學(xué)丙發(fā)現(xiàn):對(duì)于任意的a,b∈(﹣1,1),都有
D.同學(xué)丁發(fā)現(xiàn):對(duì)于函數(shù)定義域內(nèi)任意兩個(gè)不同的實(shí)數(shù)x1,x2,總滿足
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學(xué)、物理原始成績(jī):
用這44人的兩科成績(jī)制作如下散點(diǎn)圖:
學(xué)號(hào)為22號(hào)的同學(xué)由于嚴(yán)重感冒導(dǎo)致物理考試發(fā)揮失常,學(xué)號(hào)為31號(hào)的同學(xué)因故未能參加物理學(xué)科的考試,為了使分析結(jié)果更客觀準(zhǔn)確,老師將兩同學(xué)的成績(jī)(對(duì)應(yīng)于圖中兩點(diǎn))剔除后,用剩下的42個(gè)同學(xué)的數(shù)據(jù)作分析,計(jì)算得到下列統(tǒng)計(jì)指標(biāo):
數(shù)學(xué)學(xué)科平均分為110.5,標(biāo)準(zhǔn)差為18.36,物理學(xué)科的平均分為74,標(biāo)準(zhǔn)差為11.18,數(shù)學(xué)成績(jī)
與物理成績(jī)的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.
(1)若不剔除兩同學(xué)的數(shù)據(jù),用全部44人的成績(jī)作回歸分析,設(shè)數(shù)學(xué)成績(jī)與物理成績(jī)的相關(guān)系數(shù)為,回歸直線為,試分析與的大小關(guān)系,并在圖中畫出回歸直線的大致位置;
(2)如果同學(xué)參加了這次物理考試,估計(jì)同學(xué)的物理分?jǐn)?shù)(精確到個(gè)位);
(3)就這次考試而言,學(xué)號(hào)為16號(hào)的同學(xué)數(shù)學(xué)與物理哪個(gè)學(xué)科成績(jī)要好一些?(通常為了比較某個(gè)學(xué)生不同學(xué)科的成績(jī)水平,可按公式統(tǒng)一化成標(biāo)準(zhǔn)分再進(jìn)行比較,其中為學(xué)科原始分,為學(xué)科平均分,為學(xué)科標(biāo)準(zhǔn)差).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個(gè)人購買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如表的數(shù)據(jù)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)估計(jì)使用年限為12年時(shí),使用該款車的總費(fèi)用是多少萬元?
線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù),在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的離心率, 、為其左右焦點(diǎn),點(diǎn)在上,且, , 是坐標(biāo)原點(diǎn).
(1)求雙曲線的方程;
(2)過的直線與雙曲線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過點(diǎn)的直線(且)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,與軸分別交于兩點(diǎn),,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com