【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.(0,3]
D.[3,+∞)
【答案】D
【解析】解:∵函數(shù)f(x)=x2﹣2x的圖像是開口向上的拋物線,且關(guān)于直線x=1對(duì)稱∴x1∈[﹣1,2]時(shí),f(x)的最小值為f(1)=﹣1,最大值為f(﹣1)=3,
可得f(x1)值域?yàn)閇﹣1,3]
又∵g(x)=ax+2(a>0),x2∈[﹣1,2],
∴g(x)為單調(diào)增函數(shù),g(x2)值域?yàn)閇g(﹣1),g(2)]
即g(x2)∈[2﹣a,2a+2]
∵x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),
∴ a≥3
故選D
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的值域,需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線 =1(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線的兩條漸近線交于B、C兩點(diǎn),過B、C分別作AC、AB的垂線,兩垂線交于點(diǎn)D.若D到直線BC的距離小于2(a+ ),則該雙曲線的離心率的取值范圍是( )
A.(1,2)
B.( ,2)
C.(1, )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)如圖,四棱錐的底面ABCD 是平行四邊形,平面PBD⊥平面 ABCD, PB=PD, ⊥, ⊥, , 分別是, 的中點(diǎn),連結(jié).求證:
(1)∥平面;
(2)⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】航空測量組的飛機(jī)航線和山頂在同一鉛直平面內(nèi),已知飛機(jī)的高度為海拔10000m,速度為180km(千米)/h(小時(shí)),飛機(jī)先看到山頂?shù)母┙菫?5°,經(jīng)過420s(秒)后又看到山頂?shù)母┙菫?5°,求山頂?shù)暮0胃叨龋ㄈ? , ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè) =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面內(nèi)的三個(gè)向量,其中 =(1,2)
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo);
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)p0)開始計(jì)算時(shí)間.
(1)將點(diǎn)p距離水面的高度z(m)表示為時(shí)間t(s)的函數(shù);
(2)點(diǎn)p第一次到達(dá)最高點(diǎn)大約需要多少時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,當(dāng)∠xOy=α,且α∈(0, )∪( ,π)時(shí),定義平面坐標(biāo)系xOy為α﹣仿射坐標(biāo)系.在α﹣仿射坐標(biāo)系中,任意一點(diǎn)P的斜坐標(biāo)這樣定義: 、 分別為與x軸、y軸正向相同的單位向量,若 =x +y ,則記為 =(x,y).現(xiàn)給出以下說法:
①在α﹣仿射坐標(biāo)系中,已知 =(1,2), =(3,t),若 ∥ ,則t=6;
②在α﹣仿射坐標(biāo)系中,若 =( , ),若 =( ,﹣ ),則 =0;
③在60°﹣仿射坐標(biāo)系中,若P(2,﹣1),則| |= ;
其中說法正確的有 . (填出所有說法正確的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com