函數(shù)的導數(shù)是 (     )
A.B.C.D.
C

試題分析:
所以
點評:熟記基本初等函數(shù)的導數(shù)公式及四則運算法則是正確求導的基礎,必要時對于某些求導問題可以先化簡函數(shù)解析式再求導.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與曲線相切,則a的值為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 已知為實數(shù),
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線處的切線平行于直線,則的坐標為(   )
A.( 1 , 0 )B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4)D.( 2 , 8 )和或(-1, -4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

,(),曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導數(shù)為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的一個極值點.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若當時,恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,若函數(shù)的圖象在處的切線平行,則           

查看答案和解析>>

同步練習冊答案