【題目】已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若在上存在一點,使得成立,求a的取值范圍.
【答案】(1)當(dāng)時,函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減. (2)實數(shù)a的取值范圍是或.
【解析】
(1) ,則分和兩種情況結(jié)合定義域討論函數(shù)的定義域.
(2) 若在上存在一點,使得成立,即在上有,由(1)中的單調(diào)性,得出的最小值,解不等式,得到參數(shù)的范圍.
(1)
當(dāng)即時,在上,所以函數(shù)在上單調(diào)遞增.
當(dāng)即時,在上,在上
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)若在上存在一點,使得成立,即,.
①由(1)可知,當(dāng)時,函數(shù)在上單調(diào)遞增,
,即
②時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
當(dāng)即時,函數(shù)在上單調(diào)遞減,
,即.
因為,所以.
當(dāng)即時,函數(shù)在上單調(diào)遞增,
,即(舍)
當(dāng),即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞減.
此時,則,所以
即,所以無解.
綜上所以:實數(shù)a的取值范圍是或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(sin x,cos x),=(cos x,cos x),=(2,1).
(1)若∥,求sin xcos x的值;
(2)若0<x≤,求函數(shù)f(x)=·的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知定義在上的函數(shù)的單增區(qū)間為,且圖象過點.
(1)求函數(shù)的解析式;
(2)對任意的,存在常數(shù)使得成立,求整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中為了選拔學(xué)生參加“全國高中數(shù)學(xué)聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學(xué)生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地統(tǒng)計局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。
(1)求居民月收入在[3000,3500)內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣大潤發(fā)超市為了惠顧新老顧客,決定在2019年元旦來臨之際舉行“慶元旦,迎新年”的抽獎派送禮品活動.為設(shè)計一套趣味性抽獎送禮品的活動方案,該超市面向該縣某高中學(xué)生征集活動方案.該中學(xué)某班數(shù)學(xué)興趣小組提供的方案獲得了征用.方案如下:將一個的正方體各面均涂上紅色,再把它分割成64個相同的小正方體.經(jīng)過攪拌后,從中任取兩個小正方體,記它們的著色面數(shù)之和為,記抽獎中獎的禮金為.
(Ⅰ)求;
(Ⅱ)凡是元旦當(dāng)天在超市購買物品的顧客,均可參加抽獎.記抽取的兩個小正方體著色面數(shù)之和為6,設(shè)為一等獎,獲得價值50元禮品;記抽取的兩個小正方體著色面數(shù)之和為5,設(shè)為二等獎,獲得價值30元禮品;記抽取的兩個小正方體著色面數(shù)之和為4,設(shè)為三等獎,獲得價值10元禮品,其他情況不獲獎.求某顧客抽獎一次獲得的禮金的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在的單調(diào)性;
(2)當(dāng)且時,,求函數(shù)在上的最小值;
(3)當(dāng)時,有兩個零點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,,為線段的中點,為線段上的一點.
(1)證明:平面平面.
(2)若,二面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com